THREE SISTERS MOUNTAIN VILLAGE PROPERTIES LIMITED C/O QUANTUMPLACE DEVELOPMENTS LIMITED

SUBDIVISION MINING IMPACT REPORT THREE SISTERS VILLAGE - PHASE 1

NOVEMBER 2023

vsp

****|)

SUBDIVISION MINING IMPACT REPORT THREE SISTERS VILLAGE – PHASE 1

THREE SISTERS MOUNTAIN VILLAGE PROPERTIES LIMITED C/O QUANTUMPLACE DEVELOPMENTS

PROJECT NO.: CG09140 DATE: NOVEMBER 2023

WSP E&I Canada Limited 401, 1925 – 18 Avenue NE Calgary, AB T2E 7T8

T: +1 403-248-4331 F: +1 403 248-2188

WSP.com

"Effective September 21, 2022, Wood Environment & Infrastructure Solutions Canada Limited is now operating as WSP E&I Canada Limited. No other aspects of our legal entity, contractual terms or capabilities have changed in relation to this report submission."

vsp

November 10, 2023

Mr. Chris Ollenberger, P.Eng. Three Sisters Mountain Village Properties Limited c/o QuantumPlace Development Limited 1026 16th Avenue NW, Suite 203 Calgary, AB T2M 0K6

Dear Mr. Ollenberger:

Subject: Subdivision Mining Impact Report, Three Sisters Village – Phase 1

This report is intended as an assessment of potential undermining hazards associated within the Three Sisters Village, Phase 1 project area and is the second report written under Alberta Regulation 34/2020 in this area. The report describes the following:

- The geological setting and mining history;
- The investigations undertaken in this assessment;
- WSP's understanding of the undermined areas, their current condition, and their potential impact on the roads and utilities;
- Mine subsidence hazards that could impact the roads and utilities; and
- Recommendations of areas for avoidance, for further investigation, or for potential mitigation for the potential hazards identified.

Should you have any questions or concerns, please contact the undersigned.

Yours sincerely,

UpTool

James (Jim) Tod, M.Sc., P.Eng. Principal Rock Mechanics Engineer

Blake Bardlond

Blake Brodland, P.Eng. Senior Geological Engineer

WSP E&I Canada Limited 401, 1925 – 18 Avenue NE Calgarγ, AB T2E 7T8

T: +1 403-248-4331 F: +1 403 248-2188 wsp.com

Compliance Review Certificate	
Pursuant to the Canmore Undermining Review Regulation (AR 34/2020), I have made a review of the <i>Subdivision Mining Impact Report for Three Sisters</i> <i>Village, Phase 1</i> dated 10 November 2023 to determine whether the report complies with the guidelines established by order of the Minister and whether the review of the land described in the report was made in accordance with accepted professional practice and accordingly included the investigations necessary in the circumstances.	
In my opinion, the <i>Subdivision Mining Impact Report for Three Sisters Village, Phase 1</i> complies with the guidelines established by order of the Minister. In my opinion, the review of the land described in the <i>Subdivision Mining Impact Report for Three Sisters Village, Phase 1</i> was made in accordance with	
accepteu professional practice and accordingly included the investigations necessary in the circumstances. I certify that I did not assist in the preparation of the <i>Subdivision Mining Impact Report for Three Sisters Village, Phase 1</i> and I am not associated with or employed by the individuals or firm that prepared the undermining report.	
November 11, 2023	
Municipality: Kelowna, British Columbia	
Date: 10 November 2023 RM SIGNATURE: REPACHICE CONSULTANTS LTD RM AFEGA ID #: 299522 DATE: NOV 11, 2023 The Association of Professional Engineers and Geoscientists of Alberta (APEGA)	
WSP E&I Canada Limited Project No. CG09140 Three Sisters Mountain Village Properties Limited c/o QuantumPlace Developments Limited	- n g

Form 2

Aberta Municipal Affairs

17th Floor, Commerce Place 10155 - 102 Street Edmonton, Alberta T5J 4L4 Telephone 780-427-2225

AR113063

November 15, 2023

Chris Ollenberger, P. Eng. Managing Principal Quantum Place Developments Ltd. Suite 203 1026 - 16 Avenue NW Calgary, AB T2M 0K6

Dear Chris Ollenberger:

In accordance with Section 5(3) of the Canmore Undermining Review Regulation, this letter is to notify you of the receipt of the Subdivision Mining Impact Report - Three Sisters Village Phase 1, dated November 2023, together with the attendant compliance certificates as required by Section 5(2) of the Regulation.

We will also be implementing a streamlined process to accept reports. Any future submissions can be emailed to ma.updates@gov.ab.ca.

Please reach out to me at andrew.horton@gov.ab.ca if you have any questions or concerns.

Yours truly,

Andrew Horton **Executive Director** Municipal Policy and Engagement Branch

James Tod, Senior Associate Rock Mechanics Engineer CC: WSP E & I Canada Ltd.

> Sally Caudill, Chief Administrative Officer Town of Canmore

EXECUTIVE SUMMARY

This Subdivision Mining Impact Report has been prepared by WSP E&I Canada Limited for Three Sisters Mountain Village Properties Limited (TSMVPL), care of QuantumPlace Developments Limited (QPD) as required by Alberta Regulation 34/2020. The work included assessing the proposed Three Sisters Village, Phase 1 for undermining considerations. The proposed Three Sisters Village, Phase 1 development is located in Canmore, Alberta.

To address the potential risks associated with development in proximity to the historic surface and underground coal mining in and around Canmore, the Province of Alberta had previously approved Alberta Regulation 114/97, the Canmore Undermining Review Regulation. As part of the review of the Municipal Government Act undertaken by the Province of Alberta between 2012 and 2020, TSMVPL had requested that the 114/97 Regulations and associated Guidelines be updated to reflect over 20 years of experience accumulated within the regulated area, and to better align the regulations with the stages of planning approvals to provide improved clarity of process to TSMVPL and the public. QPD, the Town of Canmore and the Province of Alberta worked together to prepare updated guidelines and regulations, which led to the Province of Alberta publishing the updated Alberta Regulation 34/2020 dated 17 March 2020 (the Regulations) concerning development on undermined lands so that risks from surface and underground mines can properly be considered and mitigated as appropriate. In addition to the Regulations, an updated set of guidelines entitled 2020 Guidelines to Evaluate Proposed Development Over Designated Undermined Lands in the Town of Canmore, Alberta dated 01 April 2020 (the Guidelines) was prepared that reflected current practice and modern risk considerations; the Guidelines were also approved by the Province for use.

An area hazard map was prepared for the entire Three Sisters Village (including Phase 1) and is presented in a report by WSP (previously known as Wood Environment & Infrastructure Solutions) titled Area Mining Impact Overview Report Resort Village Area Structure Plan_Rev2, dated 16 November 2020.

The present work included reviewing the following items: LiDAR, orthophotos, Canmore coal mine plans and boreholes in the Alberta Energy Regulator database, Canmore bedrock geology maps, proposed land uses and conceptual roads for Three Sisters Village, boreholes, downhole camera videos, multiple site walkthroughs, and existing undermining and inspection reports for the area written by others spanning back for over 20 years. Using various sources of data a three-dimensional model for the underground mine workings was created. This model allowed for specific sections to be cut through areas of interest. A total of two mines partially underly Three Sisters Village, Phase 1: Morris No. 1 and Stewart No.2 mine.

Confirmation dependant recommendations are provided to mitigate against undermining hazards in the following areas: the four portal locations, four gravel subcrop locations, areas where workings are shallower than 20 m deep, the four depillared panels. Subsequent investigation either prior to or as part of the mitigation process may provide opportunity to adjust the recommended mitigation areas.

Areas not impacted by undermining include blocks: 27, 28a, 28b, 30a and 30b, as well as the dry stormwater pond, various playgrounds, and bicycle pump track. These areas require no further investigation or work and this report satisfies Section 6(1) in AR34/2020, and represents a Project Undermining Assessment Report for these areas that are not impacted by undermining.

A compliance certificate in accordance with AR 34/2020 is enclosed within this report.

wsp

TABLE OF CONTENTS

1		1
1.1	Regulation Overview	1
1.2	Proposed Development	2
1.3	Existing Hazard Mapping Work	2
1.4	Present Scope of Work	2
2	GEOLOGICAL BACKGROUND	3
2.1	Bedrock Geology	3
2.2	Surficial Geology	3
2.3	Groundwater	4
3	MINING BACKGROUND	5
3.1	Stewart No. 2	5
3.2	No. 1 Morris	6
4	DESKTOP REVIEW	7
4.1	Alberta Energy Regulator Borehole Database	7
4.2	Other Existing Boreholes	7
4.3	Previously Mapped Features and LiDAR Review	8
4.4	Areas with Existing Mitigation	12
5	BOREHOLE INVESTIGATION PROGRAM	13
5.1	Strength Testing	14
5.2	Rock Mass Classification	16
5.3	Groundwater Monitoring	17
5.4	Borehole Camera Survey	18
5.5	Gas Measurements	20
6	ASSESSMENT	21
6.1	Three-Dimensional Modelling	21

WSP E&I Canada Limited November 2023 Table of Contents – Page i

wsp

 Development of Subsidence	6.2
 Estimates of Subsidence	6.3
 RECOMMENDATIONS	7
 CLOSURE	8
 REFERENCES	9

Subdivision Mining Impact Report, Three Sisters Village – Phase 1 Project No. CG09140 Three Sisters Mountain Village Properties Limited c/o QuantumPlace Developments Limited WSP E&I Canada Limited November 2023 Table of Contents – Page ii

wsp

TABLES

Table 3-1	Mines Underlying the Phase 1 Development after Norwest 1994	5
Table 4-1	Previously Mapped Features by Others Within	
	Phase 1 Development	9
Table 5-1	WSP Advanced Boreholes	13
Table 5-2	Summary of Cored Borehole Properties	14
Table 5-3	Summary of Brazilian Disk Testing	15
Table 5-4	Summary of Slake Durability Testing	15
Table 5-5	Summary of Unconfined Compressive	
	Strength (UCS) Testing	16
Table 5-7	Measured Water Levels in WSP Boreholes	18
Table 5-8	Measured Water Levels in Boreholes by	
	Others	18
Table 5-9	Borehole Camera Survey Results	19
	•	

FIGURES

Figure 1	Site Location
Figure 2	Site Overview with Orthophoto
Figure 3	Site Overview with LiDAR
Figure 4	Phase 1 Elevation Contours
Figure 5	Proposed Development
Figure 6	Existing Hazard Mapping for Development
Figure 7	Bedrock Geology
Figure 8	Stewart Mine
Figure 9	Morris Mine
Figure 10	Existing Boreholes
Figure 11	Existing Features
Figure 12	Existing Features with WSP Tracks
Figure 13	WSP Advanced Boreholes
Figure 14	Gyromaster Data
Figure 15	Groundwater Level Monitoring
Figure 16	Overburden Isopach Map
Figure 17	Assessment of Panels
Figure 18	Approximate Bedrock Cover Contours
Figure 19	Panel 1 – Morris Mine
Figure 20	Panel 2 – Morris Mine
Figure 21	Panel 3 – Morris Mine
Figure 22	Panel 4 – Stewart Mine
Figure 23	Panel 5 – Stewart Mine
Figure 24	Panel 6 – Morris Mine
Figure 25	Areas Recommended for Mitigation

vsp

APPENDICES

APPENDIX A MINING HISTORY APPENDIX B GROUND DEFORMATION APPENDIX C 3D MODEL PLANS AND SECTIONS APPENDIX D WSP BOREHOLE LOGS AND POINT LOAD TEST DATA APPENDIX E CAMERA SURVEY APPENDIX F LIMITATIONS

1 INTRODUCTION

WSP E&I Canada Limited (WSP) is pleased to submit this report to Three Sisters Mountain Village Properties Limited (TSMVPL), care of QuantumPlace Developments Limited (QPD). This work was completed in fulfillment of Work Order 004 signed on 26 February 2021, and contractually covered by the Master Services Agreement signed on 23 June 2020.

It is understood that TSMVPL will be developing the Three Sisters Village to the west of Three Sisters Parkway (Highway 742), across from the existing Cairns Landing development, utilizing a multi-year phased approach. Phase 1 is the first phase being developed, and an overview map of the proposed Phase 1 site in relation to Canmore and nearby surrounding development is shown in **Figure 1**. A closer view of the project area, including the 500 m Public Safety Assessment Area overlain on orthophoto and LiDAR backgrounds are shown on **Figure 2** and **Figure 3**, respectively. A close-up view of the Phase 1 development, including elevation contours is shown as **Figure 4**.

1.1 REGULATION OVERVIEW

To address the risks associated with development in proximity to the historic surface and underground coal mining in and around Canmore, the Province of Alberta had previously approved Alberta Regulation 114/97, the Canmore Undermining Review Regulation. As part of the review of the Municipal Government Act undertaken by the Province of Alberta between 2012 and 2020, TSMVPL had requested that the 114/97 regulations and associated guidelines be updated to reflect over 20 years of experience accumulated within the regulated area, and to better align the regulations with the stages of planning approvals to provide improved clarity of process to TSMVPL and the public. QPD, the Town of Canmore and the Province of Alberta worked together to prepare updated guidelines and regulations, which led to the Province of Alberta publishing the updated **Alberta Regulation 34/2020** dated **17 March 2020** (the Regulations) concerning development on undermined lands so that risks from surface and underground mines can properly be considered and mitigated as appropriate. In addition to the Regulations, an updated set of guidelines entitled **2020 Guidelines to Evaluate Proposed Development Over Designated Undermined Lands in the Town of Canmore, Alberta** dated **01 April 2020** (the Guidelines) was prepared that reflected current practice and modern risk considerations; the Guidelines were also approved by the Province for use.

This Subdivision Mining Impact Assessment Report is intended as an assessment of potential undermining hazards associated within the project area and is the second report written under Alberta Regulation 34/2020. The report describes the following:

- The geological setting and mining history;
- The investigations undertaken in this assessment;
- WSP's understanding of the undermined areas, their current condition, and their potential impact on the roads and utilities;
- Mine subsidence hazards that could impact the roads and utilities; and
- Recommendations of areas for avoidance, for further investigation, or for potential mitigation for the potential hazards identified.

This report has been prepared using the 2020 Regulations and Guidelines.

1.2 PROPOSED DEVELOPMENT

The proposed development for Phase 1 is shown on Figure 5 and is expected to consist of:

- ten residential parcels for development, consisting of townhomes, apartments and semi-detached units expected to range from two to five stories in height;
- access roads and utilities;
- steep creek hazard diversion berms along the Three Sisters Creek; and
- a dry stormwater pond.

1.3 EXISTING HAZARD MAPPING WORK

An area hazard map was prepared for the entire Three Sisters Village (including Phase 1) and is presented in a report by WSP (previously known as Wood Environment & Infrastructure Solutions) titled *Area Mining Impact Overview Report Resort Village Area Structure Plan_Rev2*, dated 16 November 2020. The development hazard mapping of the entire Three Sisters Village, as determined from this earlier report, are shown in **Figure 6**, with Phase 1 outlined.

1.4 PRESENT SCOPE OF WORK

The purpose of this project is to develop a Subdivision Mining Impact Report for Three Sisters Village – Phase 1 according to the Guidelines.

The steps outlined in Sections B.2 and B.3 of the aforenamed document specify the technical evaluation process appropriate for a subdivision Mining Impact Overview Report, which is to consist of the following:

- Prepare site-specific maps and conduct field investigations;
- Identify mining features, map hazard zones and estimate ground deformations (where appropriate);
- Recommend mitigation of mining features as required; and
- Prepare subdivision mining impact assessment report.
- Identify blocks or areas that are not impacted by undermining such that this report will suffice as a Project Undermining Assessment Report for the identified areas under the Regulations.

2 GEOLOGICAL BACKGROUND

The bedrock geology, surficial geology, and groundwater considerations for the site are presented in the following sections.

2.1 BEDROCK GEOLOGY

The Canmore area is located in the northern portion of the Cascade Coal Basin, a northwest trending zone that extends approximately 80 km within the Front Ranges of the Rocky Mountains of Alberta. Bedrock at the site consists primarily of the Kootenay Group, a Lower Cretaceous to Upper Jurassic age coal-bearing formation.

Stratigraphically from the bottom up, the Kootenay Group consists of the Morrisey (Weary Ridge, Moose Mtn), Mist Mountain, and the Elk formations. These sedimentary units were deposited within a broad coastal plain environment associated with the Columbia Orogeny. The Mist Mountain Formation, which is up to 1000 m thick, underlies the study area, and is comprised of interbedded sandstone, siltstone, mudstone, and coal. These units are interpreted as deltaic and/or fluvial/alluvial/plain deposits. Economic coal seams are present throughout the stratigraphic sequence in seams up to 18 m thick (Mossop, 1994).

Within the Mist Mountain Formation, the bedrock units are folded into asymmetric syncline/anticline pairs with fold axes that plunge approximately 10° to the southeast. The northeast syncline limbs generally dip to the southwest at between 10° and 35°, while the southwest limbs of the synclines range from near vertical to overturned. These seams have been repeated by thrust faulting, shear faults, and late-stage extensional faulting. Extensive shearing, structural thinning and thickening have occurred within the core of the folds and acted as natural boundaries to the mineable reserves. The repeating coal seam sequence associated with the faulting has brought the coal units in the formation within mineable depths from the ground surface.

Within the study area, the stratigraphy generally dips shallowly to the south-southwest at between 8° and 20°, as illustrated in **Appendix C**.

The coal in the Mist Mountain Formation varies between medium and low volatile bituminous coal and a firm coherent coke. However, in the vicinity of Canmore, high geothermal conditions associated with intrusive activity resulted in high volatile bituminous and semi-anthracitic coals in this area (Mossop, 1994). The general geology of the Canmore area is shown in plan and section on **Figure 7**. A more detailed description of the bedrock geology is provided in **Appendix A**.

2.2 SURFICIAL GEOLOGY

Bedrock at the site is overlain by a mix of glacial, alluvial and colluvial deposits, with thicknesses ranging typically between 0 and 30 m. The lowermost layer at the site is glacial till, generally described as competent material consisting of a mixture of clay, silt, sand, gravel, cobbles, and boulders. This is overlain by colluvial materials at or near the base of natural slopes and consists of a mix of materials including till and other sediments, as well as rock debris. The alluvial deposits are typical fan-type highly permeable sands and gravels and are generally located adjacent to active mountain streams. Both mines (Stewart Seam, No. 2 Mine and Morris No. 1 Seam, No. 2 Mine) within the footprint of the Phase 1 Development encountered gravel subcrops in portions of the upper easternmost limits of mining as discussed in subsequent sections of this report.

2.3 GROUNDWATER

The perched groundwater profile within the overburden generally follows the orientation of the ground surface towards the Bow River. The underground mine workings impact the deeper groundwater, with multiple studies indicating that the groundwater level typically fluctuates between 1310 and 1316 masl (Jacques Whitford, 2006). Historically, the surficial geology for parts of the site identified some areas as swamp; however, the groundwater regime was changed due to the underground mining, resulting in drainage of the swampy areas. From the LiDAR data and site walkthroughs, there is considerable evidence of local drainage ditches and wooden culverts, likely constructed during mining presumably to drain surface water and not allow it to enter the mines. This report does not include a hydrogeological study of the area and WSP does not recommend that one is completed. Further discussion is presented on groundwater levels as measured by WSP in subsequent sections of this report.

3 MINING BACKGROUND

Coal mining in the Canmore area began in the late 1800's to support the steam powered transcontinental Canadian Pacific Railway that ran through the Bow Valley. Semi-anthracite and bituminous coal were mined to produce steam for the trains and coke for smelting, respectively. The production of coal expanded through the First and Second World Wars. In the 1950's the railway began using diesel power instead of steam, lowering the local demand for coal. International demand kept the mines operating until 1979, when the price of coal dropped due to competition and reduced demand. This led to the closure of all coal mines in Canmore. Details of the mining history of the Canmore area are more fully described in **Appendix A**.

Two coal seams have been exploited beneath the project area, as summarized in **Table 3-1**. **Figures 8** and **9** show the layouts of each mine in plan view relative to the project area. Cross sections of the workings in relation to the project area can be seen in **Appendix C**.

SEAM NAME, MINE NAME	MINING DATES	AVERAGE SEAM THICKNESS (M)	AVERAGE MINED HEIGHT (M)	DEPTH RANGE BELOW PROJECT AREA (M)
Stewart Seam, No. 2 Mine	1914 - 1952	2.13	2.13	0 - 130
Morris No. 1, No. 2 Mine	1924 - 1941	2.0	2.0	0 – 55

Table 3-1 Mines Underlying the Phase 1 Development after Norwest 1994

Mining in the region was generally conducted via the room and pillar method, which typically consists of two phases:

- First is the development phase, in which a grid of tunnels is created (rooms) separated by a network of large pillars. During this phase, the extraction ratio (areal ratio of extracted coal to the initial in-situ coal in a seam) ranges from 20 to 40 percent and the pillars are large.
- Second is pillar recovery or the de-pillaring phase, which begins when the development has reached its
 ultimate mineable extent in the seam or area of interest. During this phase, the initial pillars are reduced in
 size to remove as much coal as practicable. The extent of de-pillaring is a function of the quality of the coal,
 the conditions of the ground around the coal (i.e., the mine roof, in particular), and general economics. Depillaring can increase the overall extraction ratio to between 50 and 75% (Norris, 1953; Appendix A).

The mines within the study represent the westernmost mine workings for the overall No. 4 mining area, which from east to west, consists of the Wilson Mine, the No. 4 Mine – No. 4 Seam, the No. 2 Morris, and the No. 1 Morris. The Stewart Mine extends from the No. 4 Mine into the No.2 Mine seam and overlies the No. 1 Morris workings. The characteristics of each mining seam, as well as their mining histories are provided in the following subsections.

3.1 STEWART NO. 2

The Stewart No. 2 mine is stratigraphically the uppermost seam mined in the vicinity of the study area and is also the uppermost economic seam in the coal bearing sequence in the Canmore area. The average thickness for this mine is 2.13 m, which has a shallow dip to the southwest in the study area. The mine operated between 1914 and 1952. This mine in relation to the Phase 1 project area is shown on **Figure 8**.

The miners encountered two (2) subcrops on the eastern limit of this mine (northwestern corner and western edge of the Project Area) while following the contour of the coal. These two locations are marked on **Figure 8**. The presence of subcrop at this location increases the potential for surface subsidence due to the lack of bedrock cover.

Within the project area limits there is one (1) known portal to this mine. This location is marked on **Figure 8.** In addition, there are shafts and portals present within the 500 m public safety assessment area. These have been mitigated for public safety as discussed within the Area Structure Plan report (Wood's Area Mining Impact Report: Resort Village Area Structure Plan_Rev2, dated 16 November 2020). Visual inspection during the site reconnaissance for the preparation of the Area Structure Plan report indicated no evidence of changed conditions for these areas. Periodic inspections of these areas (which could be completed as part of overall land reviews) should be undertaken to verify ongoing stability.

3.2 NO.1 MORRIS

The No. 1 Morris mine underlies the Stewart seam, and exploited the same seam as the Sedlock mine (located to the west / northwest). The average thickness of the seam is 1.83 m, although records indicated that in the vicinity of the Morris mine the mined thickness is on average 2 m. Within the study area, the seam dips shallowly to the southwest. The location of the No. 1 Morris mine workings in relation to the Phase 1 project area is shown on **Figure 9**.

The overlying rock mass between the Morris and the Stewart seam consists primarily of siltstone ranging between 10 and 90 m thick, but with an average thickness of 49m between the seams. The Morris seam is underlain by fine sandstone. The southeast portion of the Morris seam in the study area has been disrupted by a thrust fault, which displaced the seam to the east. This displaced seam underlies the No. 1 Morris and is referred to as the No. 2 Morris Seam. The Morris seams are part of the overall No. 4 Mine area.

The miners encountered the subcrop on the eastern limit of this mine (northern edge of the Project Area) and also on the southern edge of the Project Area) while following the contour of the coal. These two locations are marked on **Figure 9**. The presence of subcrop at these two locations increases the potential for surface subsidence due to the lack of bedrock cover.

Within the project area limits there are three (3) known portal to this mine. These three locations are marked on **Figure 9.** In addition, there are shafts and portals present within the 500 m Public Safety Assessment Area. These have been mitigated for public safety as discussed within the Area Structure Plan report (Wood's Area Mining Impact Report: Resort Village Area Structure Plan_Rev2, dated 16 November 2020). Visual inspection during the site reconnaissance for the preparation of the Area Structure Plan report did not indicate any evidence of changed conditions for these areas. Periodic inspections of these areas should be undertaken to verify ongoing stability. These inspections could be completed as part of overall land reviews, which have been previously undertaken by TSMVPL.

4 DESKTOP REVIEW

This report builds upon the earlier work presented by Wood in the Area Mining Impact Report Resort Village Area Structure Plan_rev2, dated 16 November 2020 (Wood, 2020).

The desktop portion of this assessment consisted of a review of numerous sources of data provided by QPD and acquired via public sources.

The following reviewed sources are within public domain or were purchased for this specific project:

- LiDAR and Orthophotos from the Town of Canmore, flown in June 2013;
- Canmore Coal Mine Plans from the Alberta Energy Regulator database;
- Canmore Boreholes from the Alberta Energy Regulator database;
- Canmore Bedrock Geology Map, Geological Survey of Canada, Map 1266A, Scale 1:50,000, dated 1970; and
- Canmore Museum Microfiche Records.

The following sources were provided by QPD from TSMVPL's database of previous work:

- Copies of coal mine line work and scans of mine plans from the Alberta Energy Regulator database and Canmore Museum;
- Line work of proposed land uses, conceptual road layouts, and potential building footprint areas;
- Borehole logs completed by others;
- Borehole videos and surveys by others; and
- Existing undermining and other relevant reports prepared by others for the current site and surrounding areas.

4.1 ALBERTA ENERGY REGULATOR BOREHOLE DATABASE

Boreholes in the Alberta Energy Regulator (AER) Library were drilled between 1967 and 1976 by private companies, often for exploration purposes, and later handed over to the AER library. A total of 18 AER boreholes exist within the 500 m public safety assessment area surrounding the Phase 1 Development, none of which are within the project area. The minimum, maximum and average length of these 18 boreholes was 35.0 m, 249.9 m and 99.3 m, respectively. The locations of the AER boreholes are shown on **Figure 10**.

4.2 OTHER EXISTING BOREHOLES

Another 377 boreholes were drilled within the 500 m public safety assessment area between 1998 and 2008 by others working for TSMVPL for the purposes of ground truthing the site, verifying the accuracy of the plans and the seam limits, clarifying the ground conditions associated with observed hazards, and to stabilize voids through the injection of paste or to observe the extent of paste migration performed as part of previous site mitigation work. Of these, 36 boreholes are located within the Phase 1 project area, and borehole logs have been provided to WSP.

The minimum, maximum and average borehole lengths of the 36 boreholes within the footprint of Phase 1 are 9.5 m, 62.5 m and 30.9 m, respectively. These borehole locations are also shown on **Figure 10**.

4.3 PREVIOUSLY MAPPED FEATURES AND LIDAR REVIEW

Please refer to Wood's Area Structure Plan report for details on previously mapped features, LiDAR and site walkthrough. A summary of historically identified features by others within the project area are presented in **Table 4-1** and shown on **Figure 11**. The feature type, feature description and mitigation details columns have not been modified from the original data provided by others. WSP visited all previously mapped features within the site, as well as other features based on LiDAR data and mine maps. LiDAR data from 2013, 2015 and 2023 were reviewed independently for features of interest, and also for changes using change detection methodology. There were no unexpected features of note identified within the Phase 1 site boundaries. GPS tracks from WSP's field inspection are shown as **Figure 12**. During the field inspection, no changes were noted in the surface features identified by others, and none were observed to explicitly require immediate mitigation within the development area.

During the site walkthrough, WSP noted a series of circular depressions approximately 0.5 to 1.0 m in diameter and approximately 0.5 m deep. These features are outside of the Phase 1 project area, but within the 500m Public Safety Zone. These features were noted approximately 60 m west of the Phase 1 boundary and outside of the known mined area. These features are labelled on **Figure 11**. A review of the mine scans shows two thrust faults and one strike-slip fault coalescing in this area; and WSP believes that these features are related to the faulting and not to undermining. Previously Mapped Features by Others Within Phase 1 Development Table 4-1

				MILLIGATION DETAILS AS FER UTARN	
٩	TYPE		(N/N)		
668	Portal	Reclaimed portal - gravel pushed inside and over top.	۲	Backfilled portal. No movement as of last inspection	Previously mitigated. No concerns noted in field
11MA9	Portal	Portal acress to denillared area of No 2 No 1	>	Reclaimed portal - gravel pushed inside and	Provincely mitigated Air noted to be
		Morris morrisons 15° rison Not such recorded	-		
		INUTIS WOLKINGS, 13 SUDE, NOL OVEL TECORDED		over top. Further mitigation not required.	
		workings.		Previously excavated and backfilled with	approximately u.us m in diameter.
	-			local materials (Norwest, 2001).	
B38	Shaft	Site of No. 2 Stewart air shaft in gravel about 7 m	۲	Mitigated by Golder Associates Ltd. (2001)	Previously mitigated. No concerns noted in
		deep to seam with 16° dip.		during Three Sisters Creek Subdivision 500	field.
				m Mitigation Program. Excavated to	
				heading in seam. Heading plugged with 77	
				m ³ of concrete. Backfilled.	
PR-54	Prospect	Probably prospect. Not over recorded workings.	۲	Could not locate - probably opened up into	Previously mitigated. No concerns noted in
		Possibly seeking No. 1 Morris Seam.		portal (see B107) (Norwest, 2001).	field.
PR-39	Prospect	Small hole into water filled prospect.	Y	Mitigated by Golder Associates (2001).	Previously mitigated. No concerns noted in
				Cleared of large vegetation, backfilled with	field.
			10	30 m3 of gravel pit run and graded.	
				Mitigated together with PR-38.	
PR-38	Prospect	Possibly seeking Morris Seam subcrop.	۲	Mitigated by Golder Associates (2001).	Previously mitigated. No concerns noted in
				Cleared of large vegetation, backfilled with	field.
				30 m ³ of gravel pit run and graded.	
				Mitigated together with PR-39.	
B101	Prospect	Probably prospect. Possibly portal to 15° slope.	۲	Opened up and temporarily backfilled with	Reportedly previously mitigated., however
		This feature has material built up on either side		local materials during Parkway construction	a depression approximately 10 m long,
		of it and looks like a channel without debris at		(Norwest, 2001).	0.5 m wide and 0.5 m deep noted in this
		the bottom of it. Numerous small depressions,			location parallel to a slope. This is typical of
		0.3 - 0.6 m deep. Remains of prospects PR38 and			prospects. No undermining concerns noted
		PR39.			in field.
G317	Prospect	Shallow, square depression 0.8 m long, 0.5 m	z	Inspected by Golder Associates (2004). May	Feature matching this description noted,
		wide and 0.5 m deep. Notable rock present on		regrade prior to development. Mitigation	but not "notable rock". No concerns noted
		sides.		not required. Not considered hazardous at	in field.
				time of report.	
B107	Portal	Portal access to depillared area of No. 2, No. 1	¥	Excavated and temporarily backfilled with	Previously mitigated. No concerns noted in
		Morris workings, 15° slope. Possible location of		local materials during Parkway construction	field.
		reclaimed portal. Area wooded with small trees.		(Norwest, 2001).	

Subdivision Mining impact Report, Three Sisters Village – Phase 1 Project No. CG09140 Three Sisters Mountain Village Properties Limited c/o QuantumPlace Developments Limited

FEATURE	FEATURE	FEATURE DESCRIPTION BY OTHERS	MITIGATED	MITIGATION DETAILS AS PER OTHERS	WSP DISCUSSION
D	TYPE		(N/N)		
		No sign of subsidence, only some coal and shale, mining debris.			
B106	Water- course	Approx. 50 m long depression. Could be of natural origin. Narrow at the west and, 1 m wide and 1 m dean incorrestively wider and deaner	z	Inspected. No mitigation required.	Erosion gulley noted in field. Water is being directed to this location through an instream ditch is reientated anonovimately
		and 1 in usery, progressivery word and userper towards west where it is 10 m wide and 5 m deep. Some water seeping from the sides and floor at the west forming a stream. Possibly remains of borrow pits supplying gravel to block off adjacent to No. 1 Morris Portal.			upput early unclude approximately NE-SE as seen on the LiDAR.
B103	Surface Debris	Drainage ditch above shallow workings, 30 – 50 m long, 1 m wide, 0.5 - 0.7 m deep with flat bottom and vertical sides.	z	Inspected. No mitigation required.	Feature is parallel to a linear tree clearing and modern-day biking pathway, possibly originally cleared for construction access.
B102	Surface Debris	Trench like watercourse depression 20 m long, 1 m across and 0.7 m deep. Flat vertical sides. Possible surface excavation.	z	Inspected. No mitigation required.	Feature is parallel to a linear tree clearing and modern-day biking pathway, possibly originally cleared for construction access.
837	Cave Subsidence	Square shaped depression, 15 m long, 7 m wide, 1 m deep, sharp edges, grass and small trees.	Å	Mitigated by Golder Associates Ltd. during Three Sisters Creek Subdivision 500 m Mitigation Program (2001). Feature was excavated and backfilled with approx. 100 m ³ of material.	Previously mitigated. No concerns noted in field.
868	Subsidence	3 m diameter hole, 1.5 m deep with steep edges along south and southwest sides. 8 m gravel cover over workings. Grass and trees. No recent movement. No danger.	*	Regraded during Three Sisters Creek Golf Course (TSCGC) development, (2007). Mitigated by Golder Associates Ltd. (2001) during Three Sisters Creek Subdivision 500 m Mitigation Program. Feature was incorporated into feature B67.	Previously mitigated. No concerns noted in field. Modern access road exists in this location.
B67	Subsidence	Irregular sink hole 5 m long and 10 m wide, with max depth of 1.2 m. There are two distinct holes inside this depression, 0.5 m diameter, 1 m deep with vertical sides. Grass and trees. 8 m gravel cover over workings.	7	Regraded during TSCGC development (2007). Mitigated by Golder Associates Ltd. (2001) during Three Sisters Creek Subdivision 500 m Mitigation Program. Feature was excavated and backfilled with approx. 50 m ³ of material.	Previously mitigated. No concerns noted in field. Modern access road exists in this location.
B100	Portal	Small depression, 2 m diameter, 0.5 m deep. Small shrub and grass growing. Depression over slope from 899 portal.	z	Inspected. Indistinguishable from native ground	No concerns noted in field. Modern biking trail exists in this location.

Subdivision Mining impact Report, Three Sisters Village – Phase 1 Project No. CG09140 Three Sisters Mountain Village Properties Limited c/o QuantumPlace Developments Limited

EFATH IRF	EFATI DE	CEATINE DESCRIPTION BY OTHERS	MITIGATED	MITICATION DETAILS AS DED OTHEDS	MCD DICCLICCION
9	TYPE		(N/X)		
889	Non-mining Related	Small and shallow depressions above old U/G workings 0.5 m - 0.7 m deep. Suspected portal. No danger. Recognizable only because of mine plan showing U/G workings.	z	Mitigation not required.	No concerns noted in field.
B108	Watercourse	No subsidence. Some water seeping from ground forming a stream.	z	No Mitigation Required. Feature washed away by Three Sisters Creek.	Feature not undermining related, instead a waypoint for the creek. No concerns noted in field.
PR-04	Prospect	Prospect drivage as shown on mine plans. Drivage is approximately 5 m wide, 30 m long and 1.7 m high with a maximum dip of 47°.	٨	Excavated, concrete plug installed and backfilled during Parkway construction (Norwest, 2001).	Previously mitigated. No concerns noted in field. Modern pathway is adjacent to this location.
G315	Sinkhole	Potentially hazardous hole about 2m deep and 3m diameter. Appears partially dug-up by hoe. Close to dirt road and power lines	z	Inspected by Golder (2007). To be mitigated during TSCGC 500m zone mitigation	No concerns noted in field. This area is covered by stockpiles.
G314	Surface Debris	Large pile of logs and logging waste. Not mining related.	z	Inspected by Golder Associates (2004). General cleanup and disposal of debris is recommended. Mitigation not required. Not considered hazardous at time of report.	Significant felled logs noted. No undermining concern.
G316	Surface Debris	Wood structure, interpreted to be a drainage structure used during mining.	z	Inspected by Golder Associates (2004). May recover as an artifact. Mitigation not required. Not considered hazardous at time of report.	Not noted in this location, however two wooden culverts were noted approximately 100 m south near the drainage ditch and creek.
G405	Prospect shaft	Square shaped depression approx 1m square by 0.4m deep. Possible prospect into the No. 2 Morris seam. Steel anchors and guy wires surrounding the feature. Small trees growing in feature.	z	Inspected by Golder Associates (2007). Investigate and mitigate for TSCGC 500m safety zone.	Not observed or located during site walkthroughs on LiDAR data. Understood to have been mitigated.
MISC. MINE DEBRIS	Misc. Mine Debris	#\/\A	#N/A	#N/A	Various mine debris noted, including railway track, wires, anchor points, wooden wire spool, steel pipes, etc. Also noted are historical drainage ditches in this area.
G389	Surface Debris	Trench 1.5 m wide by 1 m deep. Bearing 170/350 and is overgrown with spruce trees. Presumed to be a drainage trench.	z	May regrade prior to development.	Not an undermining concern. No concern noted in field.
G390	Surface Debris	Trench 1.5 m wide by 1 m deep. Bearing 40°/220°. Sides littered by old wooden culvert debris.	z	May regrade prior to development.	Not an undermining concern. No concern noted in field.

Subdivision Mining impact Report, Three Sisters Village – Phase 1 Project No, CG09140 Three Sisters Mountain Village Properties Limited c/o QuantumPlace Developments Limited

4.4 AREAS WITH EXISTING MITIGATION

As identified in the preceding table, there are features with the Phase 1 project area that are understood to have been previously mitigated for public safety, including all known mine portals and mine shafts. In addition to these features, additional mitigation was completed at specific locations partially located within Phase 1 and commensurate with the requirements of the originally proposed golf course, and not for development. It is understood that some mitigation works are not formally documented at this time. During the subsequent mitigation work at this site, the location and extent of earlier mitigation works for the proposed golf course will be confirmed to ensure the entire site is fit for development.

5 BOREHOLE INVESTIGATION PROGRAM

Prior to the field drilling, the Alberta One Call clearances were obtained for the site and a secondary locate sweep was conducted with a private utility locator. A pre-drilling hazard assessment and a toolbox safety meeting were conducted with the field crew before accessing the site and completing the borehole drilling.

The field drilling program at site consisted of a geotechnical soils investigation combined with an undermining investigation. The program was completed between 22 March and 03 April, 2021 and was supervised by a WSP geotechnical technician. The planned boreholes were advanced by Geotech Drilling of Prince George, British Columbia using a track mounted Fraste MDXL drill rig equipped with ODEX (for soils), air rotary (for bedrock) and wet rotary (for selected bedrock boreholes) equipment. A total of 16 boreholes were advanced for the investigation program, with seven (7) boreholes advanced for undermining assessment. All of the WSP borehole locations are indicated on the borehole location plan presented as **Figure 13**.

The borehole drilled depths are summarized in Table 5-1 below.

BOREHOLE ID	GROUND ELEVATION (M)	BOREHOLE DEPTH (M)	BOREHOLE PURPOSE
BH21-RV-01	1323.59	6.4	Geotechnical
BH21-RV-03	1352.37	10.6	Geotechnical
BH21-RV-04	1344.43	15.0	Undermining
BH21-RV-05	1355.07	15.4	Undermining
BH21-RV-06	1355.46	63.0	Undermining
BH21-RV-07	1351.10	11.9	Undermining
BH21-RV-08	1323.72	4.3	Geotechnical
BH21-RV-09	1335.16	4.6	Geotechnical
BH21-RV-10	1348.13	4.7	Geotechnical
BH21-RV-G1	1347.99	50.3	Undermining
BH21-RV-G2	1351.59	48.5	Undermining
BH21-RV-G3	1328.85	6.1	Geotechnical
BH21-RV-G4	1356.18	38.4	Undermining
BH21-RV-G5	1342.31	4.4	Geotechnical
BH21-RV-G6	1324.06	6.1	Geotechnical
BH21-RV-G7	1350.22	5.8	Geotechnical
BH21-RV-G8	1340.92	6.3	Geotechnical

Table 5-1 WSP Advanced Boreholes

Upon completion, all boreholes were surveyed with a GyroMaster tool by Stockholm Precision Instruments. **Figure 14** shows the survey deviation versus depth as well as the azimuth versus depth from the GyroMaster

survey. Typical resultant deviations were in the order of 1 to 1.5 m at 40 m depth; the deepest hole at 55 m depth deviated 1 m. The azimuth of the deviation did not trend together, likely because many of these boreholes are shallow and two are cored boreholes, which tend to be more vertical. At other sites, WSP has observed that for deeper boreholes, the deviation generally trends in the up-dip direction of the underlying strata.

Once survey was completed, for the air rotary boreholes a 114 mm (4-inch) inner diameter PVC pipe was installed from surface into bedrock approximately 1.5 m length past the depth of tri-cone drilling. A coupler with a slightly larger diameter than the tricone bit borehole was used to prevent the PVC from sliding deeper into the borehole. Steel casing protectors were installed at surface around all PVCs to prevent damage or tampering. The annulus around PVC was backfilled with bentonite chips and sand on surface.

Additional details on specific boreholes are provided in the borehole logs in **Appendix D**. Photo logs of the drill core are also presented in Appendix D. A summary of the Rock Quality Designation (RQD) and recovery from the cored boreholes is presented in **Table 5-2**.

Borehole ID	BH21-RV-05	BH21-RV-06
Average RQD %	57	64
Max RQD %	93	100
Min RQD %	21	0
Average RECOVERY %	86	86
Max Recovery %	100	103
Min Recovery %	58	0

Table 5-2 Summary of Cored Borehole Properties

The core properties in Table 5-2 indicate a *Fair* RQD value, and that the rock mass is characterized by zones of good quality rock with local zones of *Poor* to *Very Poor* quality rock, as indicated by the minimum RQD and recovery values. This observation is typical for coal-bearing sedimentary rock.

5.1 STRENGTH TESTING

Upon completion of the borehole program a series of laboratory tests were conducted on collected samples; the results are summarized in the following tables.

Borehole ID	Sample ID	Rock Type	Sample Depth (m)	Average Tensile Strength (MPa)	
BH21-RV-05	BR1	Siltstone	2.8-2.9	6.0	
BH21-RV-05	BR2	Siltstone	8.65-9.0	7.4	
BH21-RV-05	BR3	Siltstone	12.6-13.2	10.8	
BH21-RV-06	BR1	Siltstone	13.9-14.0	7.6	
BH21-RV-06	BR2	Siltstone	24.0-24.2	1.4	
BH21-RV-06	BR3	Siltstone	33.9-34.0	11.2	
BH21-RV-06	BR4	Siltstone	47.1-47.3	8.4	
BH21-RV-06	BR5	Mudstone	56.4-56.6	7.1	
Maximum		4		11.2	
Minimum				- 1.4	
Average				7.5	

Table 5-3 Summary of Brazilian Disk Testing

Table 5-4 Summary of Slake Durability Testing

Borehole ID	Sample ID	Rock Type	Sample Depth (m)	Slake Durability (%)	
BH21-RV-05	SL1	Siltstone	3.8-3.9	98.3	
BH21-RV-05	SL2	Siltstone	8.7-8.9	97.2	
BH21-RV-05	SL3	Siltstone	12.6-13.2	99.2	
BH21-RV-06	SL1	Siltstone	14.0-14.15	99.2	
BH21-RV-06	SL2	Siltstone	24.4-24.5	91.8	
BH21-RV-06	SL3	Siltstone	34.0-34.2	99.1	
BH21-RV-06	SL4	Siltstone	46.9-47.1	99.3	
BH21-RV-06	SL5	Mudstone	56.2-56.4	88.7	
Maximum				99.3	
Minimum				88.7	
Average		1 An A Abhanallynn me e y pres y 2 2 3 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	darmangen yn	96.6	

Borehole ID	Sample ID	Rock Type	Sample Depth (m)	UCS (q _u) (MPa)	Strain at Failure (%)
BH21-RV-05	UCS1	Siltstone	3.3-3.5	143.2	2.58
BH21-RV-05	UCS1B	Siltstone	5.75-5.9	51.2	0.74
BH21-RV-05	UCS2	Siltstone	8.4-8.65	156.1	1.25
BH21-RV-05	UCS3	Siltstone	12.75-13.0	153.1	1.44
BH21-RV-06	UCS1	Siltstone	13.6-13.85	126.5	2.4
BH21-RV-06	UCS2	Siltstone	23.8-24.0	90.8	0.69
BH21-RV-06	UCS3	Siltstone	32.9-33.1	170.8	1.28
BH21-RV-06	UCS4	Siltstone	47.3-47.5	99.8	1.12
BH21-RV-06	UCS5	Mudstone	56.55-56.8	138.6	2.05
Maximum				170.8	2.58
Minimum				51.2	0.74
Average				125.6	1.!

Table 5-5 Summary of Unconfined Compressive Strength (UCS) Testing

Point load testing was also conducted on cored boreholes. A total of 191 valid tests were completed as presented in **Appendix D** with both a table summary and a photo of each test before breaking and after. The maximum, minimum and average Is50 was 16.9, 0.1 and 4.8, respectively. Using a K-value of 18, the maximum, minimum and average calculated Unconfined Compressive Strength (UCS) equivalent was 303.9, 2.6 and 86 MPa, respectively.

Based on the results of the laboratory testing, the rock mass at the site has an average UCS of 125 MPa, with a range between 51 and 171 MPa. The lowest UCS value is located close to ground surface and likely indicates localized near-surface weathering. The remainder of the tests indicate rock of moderate to high strength. Slake durability indicates materials are durable, with an average rating of high (98-95%) and a range from medium-high (95-85%) to very-high (100-98%).

5.2 ROCK MASS CLASSIFICATION

The Norwegian Geotechnical Institute (NGI) has established the Q-System (Barton et al. 1974) which WSP used for rock mass classification on all cores. The quantitative classification system is based on a numerical assessment using the following six parameters as given by the relation:

$$Q = \frac{RQD}{Jn} \times \frac{Jr}{Ja} \times \frac{Jw}{SRF}$$

Where:

- RQD Rock quality designation
- Jn Rating based on the number of joint sets
- Jr Rating based on the roughness of the most unfavourable joint or discontinuity
- Ja Rating based on the degree of alteration or filling along the weakest joint
- Jw Rating based on water inflow
- SRF Stress reduction factor applied based on the conditions and usage

The data for the two cored boreholes was used for the analysis. Input parameters and the resulting range of values for Q are shown in Table 5-6.

Parameter	Lower Bound	Average	Upper Bound	
RQD	34	64	93	
Jn	12	12	12	
Jr	1	1.25	1.5	
Ja	31	2	1	
Jw	1	1	1	
SRF ²	2.5	2.5	2.5	
Q	0.37	1.33	4.65	

Table 5-6 Rock Mass Characteristics for Q from Core Boreholes

*Notes:

¹ Ja of 4 used occasionally where soft infill observed on joint surfaces, but 3 is considered more representative overall.

² A value of 2.5 was used based on low stress, near surface, open joints

The average, minimum and maximum calculated Q-System values were 1.33, 0.37 and 4.65, respectively. The results of the analyses indicates that, based on the borehole data, the bedrock in the study area classifies as poor to very poor using the Q System. A lower Q value or rating correlates with a greater requirement for ground support for short term stability of underground excavations, and indicates that the rock mass above the excavations is likely to fail over time.

5.3 GROUNDWATER MONITORING

Groundwater levels were collected upon completion of all boreholes, and again on subsequent site visits. A single vibrating wire piezometer (VWP) was installed in BH21-RV-06 on 27 October 2022 to record the variation of the water levels with time. The manually recorded water levels are reported in **Table 5-7** and the VWP data is shown on **Figure 15**. Existing boreholes (completed by others) in the project area also had groundwater levels measured during the camera work. Those levels are reported in

Table 5-8.

Borehole ID	Surface Elevation (m) ¹	Bottom of Borehole Elevation (m)	Water Elevation at Completion (m)	Water Elevation on 06 May 2021 (m)	Water Elevation on 27 Oct 2022 (m)
BH21-RV-04	1344.5	1329.5	dry	2	dry
BH21-RV-05	1355.0	1339.6	1341.0	2	dr
BH21-RV-063	1355.4	1292.4	1310.5	2	1310.0
BH21-RV-07	1351.1	1339.2	dry	dry	dŋ
BH21-RV-G1	1346.8	1296.5	1296.5	1309.3	1310.6
BH21-RV-G2	1350.3	1301.9	1301.9	1315.8	1310.3
BH21-RV-G4	1356.1	1317.7	1317.7	1321.4	dr

Table 5-7 Measured Water Levels in WSP Boreholes

Notes: 1.Elevation is based on 2015 LiDAR surface.

2.Depth is uncertain due to perched groundwater table trickling from borehole wall. 3.VWP installed in this borehole on 27 October 2022.

Borehole ID	Surface Elevation (m) ¹	Bottom of Borehole Elevation (m)	Water Elevation on March/April 2021 (m)
GA02-35	1343.9	1314.1	dry to 1323.0
GA08-33	1346.1	1289.3	1308.9
GA03-66	1345.0	1316.5	dry to 1322.4
GA03-67	1346.9	1306.9	dry to 1311.
GA03-68	1348.7	1286.2	1310.0
GA08-32	1351.2	1299.2	1311.4
GA08-31	1352.6	1329.6	dry to 1330.
GA08-30	1355.0	1332	dry to 1335.

Table 5-8 Measured Water Levels in Boreholes by Others

Notes: 1. Elevation is based on data provided by TSMV

The water levels are generally consistent across the site and indicate that a significant portion of the undermining within Phase 1 is not flooded. The seepage observed in some of the boreholes, along with the geotechnical monitoring boreholes indicate that there is a perched water table within the overburden soils. The VWP data from BH-21-RV-06 shows relatively consistent groundwater elevations near 1310.6 m elevation, with slight fluctuations from day to day. A notable gap in the data exists during a period in late December 2022 when air temperatures were below -30°C. This is believed to have impacted the datalogger electronics and battery. VWP data from another site approximately one kilometer away has indicated seasonal variation in water elevations within the mine, generally with declining piezometric head through the fall and winter range of data and recharge in the spring and summer.

5.4 BOREHOLE CAMERA SURVEY

A downhole borehole camera program was completed at the site in boreholes from the WSP drilling programs, as well as in existing accessible boreholes drilled by others. The borehole camera used was either a GeoVision Deluxe,

Dual Scan Camera or Well Vu Camera, depending on availability. The program served to confirm the findings of the borehole drilling and provide further details on the bedrock and mine conditions.

The boreholes that were camera surveyed and a summary of the findings are shown in Table 5-9.

Borehole ID	Summary Findings ¹	End of Camera Hole (m)	Seam Roof Depth in Model (m)	Borehole Depth (m)	
BH21-RV-04	Void from 12.6 to 14 m, with cobble size rubble at bottom of void; no sign of cracking above the void.	14	12.6	15.0	
GA03-66	Void from 21.1 – 22.6 m; rubble at bottom of void	22.6	20.9	28.5	
GA03-67	Metallic object at 35.5 m (sharp edges); void at 33.2 – 35.8 m; water dripping into void from borehole; timbers visible on floor	35.8	31.7	40.0	
GA08-33	Bed separation from 40.9 – 41.1 m, 41.9 – 42.1 m, 43.0 – 43.1 m, 44.5 – 44.6 m, 45.2 – 45.4 m; Rubble from 45.8 – 46.8 m.	46.8	46.4	56.8	
BH21-RV-G1	Blocky 30.0 – 33.0 m but no bed separation; blocky 37.5 – 38.6 m; cracking 39.7 – 40.0 m; bed separation at 41.5 m; void at 41.7 – 42.1 m; rubble at bottom of hole; possible rockbolts in roof	42.1	48.1	50.3	
GA03-68	Poor visibility – camera results inconclusive	57.3	57.3	62.5	
BH21-RV-07	Void 8.4 – 9.8 ; sidewall of opening	11.7	8.4	11.9	
BH21-RV-G2	Bed separation at 23.5 – 23.6 m with water flow; broken ground at 45 m; void at 46.2 – 47.7 m; fine rubble on floor	47.7	45.8	48.5	
GA08-32	Water trickling in at 24.8 m; bed separation at 41.3 – 41.4 m; Bed separation from 42.0 – 42.3 m, 42.6 – 42.7 m, 43.4 – 43.5 m; void at 44.6 – 46.8 m; rubble at 46.8 m	46.8	48.6	52.0	
GA08-31	Void at 19.7 – 22.0 m; very little rubble on floor	22.0	20.3	23.0	
GA03-69	Pillar	n/a	n/a	35.2	
GA08-30	Void at 19.8 – 21.5 m; rubble on floor	21.5	20.3	23.0	
BH21-RV-G4	Bed separation at 27.9 m –possible fractured rock; bed separation at 29.5 m; void 31.6 – 33.1 m; rubble on floor	33.1	35.8	38.4	
BH21-RV-05	Stewart Seam. Vertical cracking present from collar of hole to depth. Bed separation from 13.4 – 13.7 m, 13.8 – 4.0 m; void from 14.3 – 14.4 m; blocky rubble on floor.	14.4	12.0	15.4	

Table 5-9 Borehole Camera Survey Results

Notes:

 Void indicates the remains of the mined void; bed separation represents movement of strata above the mined void due to relaxation. The sum total of bed separation and void is considered in the assessment of subsidence and sinkhole formation potential.

In some cases the maximum camera depth was restricted by rubble and/or collapsed debris that blocked the borehole. For these holes, the borehole log was used to identify any additional voids below the maximum borehole camera depth achieved. It was important to use the information from both the core logs and the borehole camera. While the camera is much more reliable in detecting voids and bed separations, it is limited when the bottom of the hole is filled with rubble; for this condition, the logs rely on drill cuttings and feedback/rig response.

Where no camera data was available, existing borehole logs from previous investigations by others were used for subsequent assessment.

Additional details, along with exemplar screenshots from the camera work is provided in Appendix E.

5.5 GAS MEASUREMENTS

During borehole drilling, a gas detector was on site to monitor levels of methane (CH4), oxygen (OXY) and Lower Explosive Limit (LEL). An odour of hydrogen sulfide was detected while advancing BH21-RV-04 at 11.4 m, BH21-RV-G1 at 45.4 m depth, RV21-RV-G2 at 45.4 m depth and BH21-RV-G4 at 25.9 m depth. Following the PVC installation hydrogen sulfide levels were measured to be 11 PPM in BH21-RV-G4.

Previous work in Canmore has shown that gas can be generated when the coal is mined or disturbed by drilling, but that the levels of gas quickly dissipate thereafter. In some older areas within Canmore where there are underlying coal seams, the developer has installed a passive sub-slab ventilation system. Testing at the passive outlet vent was completed quarterly for the first year and semi-annually for a period of two-years thereafter. The testing results indicated that oxygen concentrations and methane levels were within reasonable limits (Stephenson and Van Den Bussche 1996).

Coal may be exposed during the construction work given the shallow coal seams with the project area. Gas is not expected to be a hazard to residential developments based on historical measurements. If during construction, insitu coal is exposed, the exposure should be inspected by a qualified engineer for suitability prior to backfill or construction taking place.

6 ASSESSMENT

6.1 THREE-DIMENSIONAL MODELLING

WSP created a 3D model of the mine workings within the project area and surrounding 500 m buffer. The model was created using Deswik, a 3-D mine modeling package that permits export to various other software packages. The existing mine scans and mosaics were used to establish the mine linework and survey elevations, which was then carefully reviewed with Lidar topography and detailed borehole data to confirm the model, or to make minor adjustments as needed to account for current topography and mine conditions.

The mine scans were aligned and scaled to the Alberta Township System (ATS) Grid in Deswick. Linework was completed within the project area based on the historical mine scans and existing QPD data sources. Seam elevations were taken from the historic mine scans and adjusted to the elevation datum offset of 53 feet based on a note on scan "Carey_aban_vs2-3" dated 1935 and based on work undertaken by Norwest to verify the datum. Seam elevations were also determined from applicable borehole logs and combined with the seam elevations from the mine scans. Surfaces were generated using the elevations from the mine scans and borehole logs and re-limited to the outline of each mine's linework. The surfaces were then extruded to their corresponding seam thicknesses, resulting in 3D solids. The pillars for each mine were generated based on the linework created based on the above work and then cut from the solid of the applicable mine. The mine solids were then exported as dxf files for use in other packages.

A bedrock surface map was also created for the site using the digitized borehole logs that were provided by QPD and supplemented with WSP borehole data from the current undermining assessment. Using this data, an approximate isopach map showing overburden thickness was generated as shown in **Figure 16**. Overburden across the site is generally less than 10 m thick, and often less than 5 m thick.

The 3D model allows for locations of cross and long sections to be specified in plan view, with the software generating the sections automatically. **Appendix C** shows examples of various sections that have been cut through the model.

6.2 DEVELOPMENT OF SUBSIDENCE

The undermined areas in southeast Canmore are susceptible to two different types of subsidence: sinkhole development, and surface troughs or sags (panel subsidence). These mechanisms can be described as follows:

SINKHOLE DEVELOPMENT

Sinkhole development is possible where the underground workings approach the top of the bedrock surface (subcrop), and generally involve limited surface area. In these cases, the gradual collapse of the roof of the mine working causes the void to migrate upwards toward the ground surface. At the same time, the failed material increases in volume via bulking as it settles on the floor of the mine workings. These sinkholes can coalesce, forming steep sided troughs at the ground surface. Sinkhole development in the Canmore area is usually associated with shallow mining at or near the subcrop, or with shafts or portals for the underground workings.

To assess the potential for sinkhole formation, analysis on the stability of the roof of the existing tunnels was conducted using the Scaled Scan approach (Carter 2000). This approach determines the stability of the existing

span by calculating the Scaled Span parameter based on the existing span, site geometry, the thickness of bedrock overlying the tunnel. This value is plotted against the Q rock mass quality value and compared to curves based on a database of stable and failed crowns in varying rock conditions. The value of the minimum stable span is then determined based on the Q value for the rock mass. This value compared to the Scaled Span value is used to determine the Factor of Safety (FoS) and the Probability of Failure (PoF). The details of the approach and analyses are described in **Appendix B**.

Historically, in Canmore, undermined areas with a bedrock cover less than 8 times the thickness of the mined seam (measured from the floor of the mined seam) have been considered to have potential for sinkhole formation. The analyses above indicate that this corresponds to a bulking factor of 1.10 to 1.15. This is considered conservative, however, as the average bulking factors observed for the site typically ranged from 40 to 50% (Golder, 2019).

A review of the literature and additional reports from site was conducted in 2023 as the observations from the surface expression above the workings and from the drilling programs did not support such a low bulking factor in the shallow-dipping portion of the seams. Based on this review, the details of which are provided in Appendix B, an adjustment to the lower bound value for bulking factor for shallow dipping seams was considered appropriate, bringing the analyses more in line with the observations from site.

The 15% bulking factor (1.15) should be retained for the more steeply dipping portions of the coal seams where the more friable coal present in remnant pillars makes up a larger proportion of the failed material. However, given the higher strength and competent materials of the strata overlying the coal seams, for the more shallow-dipping coal seams, a slightly less conservative but more representative bulking factor of 25% (1.25) is considered appropriate. This corresponds to potential surface influence where the bedrock cover is less than 5 times the mined seam thickness. The bulking factor for the overburden will remain at 2% (1.02).

PANEL SUBSIDENCE

Panel sags or troughs tend to form above wider mined panels with higher extraction ratios and can form due to mining at various depths. This process is described in detail in **Appendix B**.

In the study area, panel subsidence is associated primarily with three de-pillared areas of the No. 1 Morris Mine, which underlies the southwestern portion of the study area, and with two de-pillared areas of the Stewart Mine, located at the southwestern limit of the study area. There is also a de-pillared area associated with the No.2 Morris Mine, just beyond the southeastern limits of the study area.

The state of the ground conditions was determined based on available drillhole data within the small de-pillared portion of the seam. The holes that were used in the determination and their location are shown on **Figure 17**, and the data is summarized in **Table 6-1**. As can be seen from this Table, the drillholes hit a variety of different interpreted targets within the de-pillared seam. For assessment, only the holes that were interpreted to encounter the de-pillared zones were considered, as these holes best represent the development of potential subsidence above the seam.

Panel Mine ³	Borehole ID	O/B Thickness (m)	Mine Roof Depth (m)	Cumulative Height of Voids, Hv (m)	Height of Loose Rubble, H1 (m)	Height of Blocky Rubble, H2 (m)	Depth to Uppermost Void/ Fracture ² (m)	Terminatior Depth (m)
Panel 1 Morris	GA02-381	7.8	30.4	1.6	0.3	4.9	27.4	32.4
Panel 2	GA08-33	4.8	46.4	0.8	0.3	7.0	40.9	56.8
Morris	BH21-RV-G1	1.5	48.1	0.6	8.0	4.0	41.5	50.3
Panel 3	BH21-RV-G2	5.2	47.9	1.7	0.1	5.2	23.5	48.5
Morris	GA08-32	7.5	48.6	0.8	3.8	3.3	24.5	52.0
Panel 4 Stewart	BH21-RV-05	1.1	13.3	0.6	0.8	0.8	13.4	15.4
	GA03-1311	1.0	6.9 ⁴	0.1	0	1.2	7.7	11.5
	GA03-129 ¹	5.5	10.14	0.8	0.9	0	10.4	17.9
Panel 5 Stewart	GA02-1021	2.9	47.4	1.7	0.4	6.7	40.8	54.6
Slewart	GA02-57 ¹	0.5	20.94	0.6	0.5	11.5	23.3	51.2
	GA02-1061	2.3	51.5	0.3	1.7	0.8	50	17.7
Panel 6 Morris	RDH98-15 ¹	6.2	13.3	1.6	0.4	1.5	12.8	21.2

Table 6-1 Key Borehole Parameters Within the De-Pillared Panels within the Study Area

2. This represents the depth of the uppermost ground relaxation, whether it is void, bed separation or fracture.

3. Morris Mine seam thickness is 2.0m on average; Stewart Mine seam thickness is 2.13 m on average

4. These values are based on the mine floor as encountered in borehole logs by others and adding the average seam thickness of the Stewart Mine

ESTIMATES OF SUBSIDENCE 6.3

There are six (6) de-pillared panels within or adjacent to the study area that warrant discussion. Three of these are small panels within the No. 1 Morris mine: Panel 1 is located just north of the study area limits, and Panels 2 and 3 are located within the study area boundaries. Panels 4 and 5 are larger panels within the Stewart Mine, and their up-dip limits lie within eastern limits of the study area, with the panels dipping off to the southwest. The final panel, Panel 6, is located within the Morris No. 2 Mine workings, just east of the southern limits of the study area. The panel locations are shown on Figure 17.

For areas where depillaring was not undertaken, analyses were performed to assess the stability of the remaining crown pillars above the workings and to determine the potential for sinkhole development above. For the depillared panels, assessment of panel subsidence was also conducted. These analyses and outcomes are discussed in the following sections.

SINKHOLE SUBSIDENCE

The development of sinkholes is generally a function of the height of the void, the quality of the rock above the tunnel, and the thickness of rock and soil above the void. To assess the stability of the rock above the tunnels of the No.1 Morris workings, the rock mass quality Q was determined from two core boreholes drilled in the study area: BH21-RV-05 and BH21-RV-06. The rock mass characteristics and input values are shown in Table 5-6.

Historically, the areas in and around the undermined parts of Canmore were generally considered susceptible to chimney failure and sinkhole development where the ground surface was less than eight times the thickness of the underground voids based on observations and data collected (Golder, 2019). This assessment considered all seams, regardless of the seam dip at the investigation area. However, WSP considers a bulking factor of 25% (1.25) to be more appropriate for the shallow dipping seams in the study area, corresponding to sinkhole potential for areas where the distance between the bedrock surface and the roof of the mine seam is less than five (5) times the seam thickness. For the case of the shallow-dipping No. 1 Morris mine in the study area where the mined thickness was 2 m on average, this corresponds to a minimum thickness of 10 m of bedrock above the excavations.

The stability of the crown pillars was assessed using the Scaled Span approach described in **Appendix B**. From this assessment, ground over the tunnels is assumed to require a minimum factor of safety of 2, with a corresponding Probability of Failure of 0.5 to 1.5%, a Class F or higher for long-term stability, suitable for long-term crowns with infrastructure. For the rock mass above the No. 1 Morris mine, a factor of safety of 2 is not achieved for crowns with a rock cover less than 25 m, 44 m, and 72 m for 4.2, 5.6, and 7.2 m spans, respectively. Consequently, the potential for chimney failure reaching the ground surface must be assessed.

Subsidence development for infrastructure will depend on the location of the infrastructure and the thickness of overburden at that location. Assuming a bulking factor of 1.25 (25% volume increase) for the rock and 1.02 (2% volume increase) for the overburden, the estimated surface deformation was determined for boreholes intersecting the tunnels in above the No.1 Morris Mine. These are summarized in **Table 6-2**.

Borehole ID	Location ¹	Depth of Mine Roof (m)	Cumulative Height of Voids Hv (m)	Overburden Thickness (m)	Surface Deformation (m)
BH21-RV-04	Gangway adjacent to subcrop	10.3	2.5	2.2	0²
GA03-66	Adjacent to Gangway	17.3	1.6	4.0	0
GA03-67	Gangway	28.1	2.3	5.6	0
GA03-68	Adjacent to slope	51.9	2.0	5.4	0
BH21-RV-07	Small slope between horizontal rooms near subcrop	7.7	2.0	0.7	0.1
GA08-31	Main slope to surface	15.2	1.9	5.0	0
GA03-69	Pillar	n/a	0.0	11.5	0
GA08-30	Gangway (short)	15.7	1.7	4.5	0
GA08-29	Slope at intersection with gangway	15.4	1.8	9.0	0
GA08-28	Same slope as GA08-29 but down dip	17.0	1.7	16.5	0
BH21-RV-G4	Gangway	16.1	3.9	15.5	0 ²
GA03-70	Gangway	19.6	1.7	14.4	0
Notes:	1. Gangway here refers to n	nine openings ru	nning along the st	rike of the seam (i	.e. horizontally);

Table 6-2 Estimated Sinkhole Formation by Borehole (assuming 25% bulking)

 Gangway here refers to mine openings running along the strike of the seam (i.e. horizontally); slopes run up-dip.

 At a 25% bulking factor, the chimneying chokes off just at the top of rock for the holes indicated; there is still potential for overburden material to migrate into the interstitial space below, potentially resulting in surface deformation with time.

As shown in **Table 6-2**, one of the borehole locations (BH21-RV-07) has the potential to form sinkholes at the ground surface. Two additional boreholes (BH21-RV-04 and BH21-RV-G4) show that the caving chokes off just at or immediately below the bedrock surface, allowing the potential for overburden materials to migrate into the remaining interstitial voids in the caved material with potential for surface expression over time. The remainder of the holes choke off below the bedrock surface. However, any notable change in either rock cover or void height, or the removal of caved debris by water or downslope migration in the tunnels could lead to sinkhole formation. For most of the shallow workings at the No.1 Morris mine, the water table is at a depth of approximately 35 m below ground surface. Seepage and minor water flow may be present within the mine workings, which might increase the potential for the migration of fines and smaller caved debris downslope, removing some of the bulked material and creating more volume for the chimneying failure to progress.

At the 25% bulking factor discussed above, the potential surface influence based on bedrock cover less than 5 times the mined seam thickness is determined for each seam in the Phase 1 area. For the 2 m void height in the No. 1 Morris mine, this would mean that any bedrock cover less than 10 m is susceptible. For 2.13 m void height in the Stewart No. 2 mine, this would mean that any bedrock cover less than 10.65 m. To account for variability in the bedrock surface, mined height, and overburden thickness, WSP recommends that any voids with less than 15 m of bedrock cover be mitigated, which is also in agreement with the historical observations at site. **Figure 18** shows approximate bedrock cover over the mine workings in the Phase 1 development.

GENERAL PANEL SUBSIDENCE

For the six small de-pillared areas identified in Figure 17, the parameters for general panel subsidence were estimated. The first step in estimating general panel subsidence was to assess the stability of the pillars indicated on the mine plans using the relationships in Appendix B. A factor of safety below 1.5 was considered unstable. Figure 17 shows the location of the pillars analyzed for the No. 1 Morris Seam in the study area.

In all cases, due to the shallow depth and low load, all pillars had a safety factor in excess of 1.5, so the panel dimensions were assessed based on the geometries indicated from the mine planes and model. The maximum subsidence (Smax) was calculated using the relationships in Appendix B for the boreholes in Table 6-3 that were interpreted to be in the de-pillared portions of the mine, and only those that were considered to represent panel failure (and not voids associated with remnant pillars or rib pillars). Input parameters for assessment of the subsidence based on the drilling data above the panels is shown in Table 6-3. The extraction ratio for the calculation was assumed to be 100% and the void was conservatively assumed to extend across the entire panel.

Panel & Mine	Borehole ID	Void Height H _v (m)	H₁¹ (m)	H₂² (m)	Depth to Void ³ (m)	Width: Depth Ratio⁴	Subsidence Factor	Smax (m)
Panel 1 Morris	GA02-381	1.6	0.3	4.9	27.4	0.80	0.22 ⁵	0.37
Panel 1	GA08-33	0.8	0.3	7.0	40.9	1.27	0.81	0.66
	BH21-RV-G1	0.6	8.0	4.0	41.5	1.25	0.81	0.52
	BH21-RV-G2	1.7	0.1	5.2	23.5	1.20	0.81	1.38
	GA08-32	0.8	3.8	3.3	24.5	1.15	0.81	0.66
	BH21-RV-05	0.6	0.8	0.8	13.4	4.18	0.81	0.49
	GA03-131	0.1	0.0	1.2	7.7	19.48	0.81	0.08
	GA03-129	0.8	0.9	0.0	10.4	14.42	0.81	0.65
	GA02-102	1.7	0.4	6.7	40.8	3.68	0.81	1.40
	GA02-57	0.6	0.5	11.5	23.3	6.44	0.81	0.52
	GA02-106	0.3	1.7	0.75	50	3.00	0.81	0.26
Panel 6 No. 2 Morris	RDH98-15	1.6	0.4	1.5	12.8	19.00	0.81	1.30

Table 6-3 Input Parameters for Maxin	mum Subsidence (Smax)
--------------------------------------	-----------------------

H2 is the thickness of blocky material and sagging beds. 2.

3. Depth to Void is the depth to the uppermost void observed in the borehole.

W:D Ratio is the ratio of the panel width to the depth. 4.

Lower than others due to width to depth ratio 5.

From the data in Table 6-3, for Panel 1, a maximum subsidence (Smax) of 0.37 m was assumed based on a single borehole, and no updated ground conditions could be obtained from the borehole camera work as debris in the hole prevented clear interpretation of the current conditions. This Smax value is considered conservative.

For Panel 2, the predicted Smax from the two boreholes was similar. Consequently, the higher value of 0.66 m was conservatively assumed for design.

For Panel 3, the data from borehole BH21-RV-G2 was excluded as the void for the borehole was close to the original mined height, suggesting that the hole was either adjacent to supported ground or to a pillar.

WSP E&I Canada Limited November 2023 Page 26

This observation is also reinforced as the second borehole in Panel 3 (GA08-32) shows a much smaller void, and both holes in the panel exhibit a similar degree of disturbance above the roof of the original excavation. The Smax value of 1.38 m was considered an outlier based on location. Consequently, a maximum subsidence value of 0.66 m for Panel 3 was considered most representative.

For Panels 4 and 5 in the Stewart Seam, the upper limits of the panels are very shallow, and the size of the depillared seams is quite large. Because the area of interest is at the edge of the shallow panel, the values for holes near the northwestern edge of the panels were used. For Panel 4, this corresponded to an Smax of 0.49 m (from borehole BH21-RV-05), and for Panel 5, an Smax of 0.65 m (from borehole GA03-129).

For Panel 6 in the No. 2 Morris seam, the values from the up-dip side of the panel were also used, as these will represent the closest impact to the study area to the northeast. The Smax for this panel, based on borehole RDH98-15, is 1.3 m.

The shape of the subsidence troughs was determined using the relationships described in Appendix B for subsidence, strain, tilt, and curvature. Using the maximum subsidence value above, the curves for each parameter are shown in **Figure 19** to **Figure 24** for Panels 1 to 6, respectively. The units for each curve are specified in the figure legend. From the subsidence curves, the maximum strain, tilt, and curvature could be determined for each panel. These are presented in **Table 6-4**.

Parameter	Units	Panel 1	Panel 2	Panel 3	Panel 4	Panel 5	Panel 6
Maximum Subsidence, Smax (location from panel edge)	m	0.37 (19 m)	0.66 (29 m)	0.66 (18 m)	0.49 (10 m)	0.65 (6 m)	1.3 (10 m)
Maximum Strain (location from panel edge)	mm/ m	20.3 (4m and 12 m)	25.0 (5m and 16 m)	41.7 (4 m and 9 m)	54.8 (2 m and 6 m)	123.1 (1 m and 4 m)	148.2 (2 m and 6 m)
Maximum Tilt (location from panel edge)	mm/ m	40.5 (8 m)	48.3 (11 m)	82.5 (7 m)	109.7 (4 m)	243.7 (2 m)	299.9 (4 m)
Maximum Curvature (location from panel edge)	m	150 (4m and 12 m)	188 (5m and 16 m)	64 (4 m and 9 m)	27 (2 m and 6 m)	7 (1 m and 4 m)	10 (2 m and 6 m)
Notes:	1. 2. 3.	boundary. Maximum sti	rain values are inc	licative of maximum	panel, with positive tensile and compre num concave / conv	ssive strain locati	

Table 6-4 Estimated Subsidence Parameters and Locations from Edge of Panel

Note that for all panels, these are deterministic assessments and are not weighted based on probabilistic parameters. They are, however, based on the 95% determinant confidence interval for determination of the Subsidence Factor.

The strain, curvature and tilt values for the panels are high due to the shallow depths for the panels; the conditions worsen as the panel widths increase, as shown for panels 4 to 6. The threshold values for panel subsidence are shown in **Table 6-5**.

Table 6-5 Threshold Values for Panel Subsidence

Parameter	Threshold Value			
Tensile / Compressive Strain	Wood frame and block structures: 1 mm/m Pavement cracking: 10 mm/m			
Tilt	Gravity Pipelines: 2% (20 mm/m)			
Curvature	Pipelines: 1000 x diameter ¹ (200 mm dia pressure pipes: > 116 m; Gravity pipes 200 – 450 m: min 46 – 76 m) ²			

2. Minimum curvatures from product literature, assuming 4 m / 13 ft pipe sections (IPEX, 2009).

DISCUSSION

For development over the panels, the tensile strains exceed the allowable threshold values for wood frame and block structures, and for pavement cracking. Similarly, the tilt values exceed the allowable tilt threshold for gravity pipelines. The curvature values exceed the allowable values for pipelines, particularly for Panels 4, 5 and 6.

7 RECOMMENDATIONS

The following recommendations for the proposed Phase 1 Development are made. Many of the referenced locations are shown on **Figure 25**.

- Development with no undermining constraints can proceed on lots not identified on Figure 25 as "Phase 1 Areas Recommended for Mitigation". Areas not impacted by undermining include blocks: 27, 28a, 28b, 30a and 30b, as well as the dry stormwater pond, various playgrounds, and the bicycle pump track. These areas require no further work and this report satisfies Section 6(1) in AR34/2020, and represents a Project Undermining Assessment Report for these areas not impacted by undermining.
- Block 31 includes minor undermining impact on the south corner as shown on Figure 25. The impact relates to Portal 99. Mitigation will need to take place on this corner before development can proceed.
- Portal Locations: the four (4) portal locations within the Phase 1 Development have been previously mitigated for public safety. Should development or modification be planned for at these locations (e.g. foundations, grade cuts, planting, recreation areas, etc.), it is recommended that the portals be excavated to expose the mine workings and more robust mitigation be implemented. Specific mitigation details can be provided once more detailed plans are known for these four (4) areas. Opening these portals will allow for a unique opportunity to further investigate the mine workings and their condition, particularly since these workings are primarily dry (*i.e.*, the water table is located at a depth of approximately 35 m below ground surface).
- Other Portal Locations within the 500 m Public Safety Zone: the various portal and shaft locations outside of the Phase 1 Development, but within the 500 m Public Safety Zone should be included in periodic inspections (which could be completed as part of overall land reviews) to verify ongoing stability, which historically have been undertaken periodically by TSMVPL.
- Gravel Subcrops: four (4) locations with the Phase 1 development where the historical mine plans identify
 gravel was encountered during mining. This is applicable to both the Stewart and Morris mines within the
 Phase 1 Development. These areas are more prone to subsidence given the limited to non-existent bedrock
 roof in these areas. Structural mitigation or pressurized paste mitigation is recommended in these areas,
 within the mine footprint and also slightly outside of the mine footprint in case voids have formed outside of
 the mine footprint in the overburden.
 - The subcrop adjacent to the Bicycle Pump Track does not require mitigation in the configuration shown. It is understood that landscaping and/or selective vegetation may be placed in this area to discourage foot traffic over the underground workings.
- Workings Shallower than 15 m Bedrock Cover: paste mitigation is recommend in areas where the mine roof is less than 15 m depth from bedrock surface or final construction surface (whichever is lower in elevation). This is applicable to both the Stewart and Morris mines within the Phase 1 Development. It is understood that final design grade is ongoing, so these extents have been estimated as approximately 18,600 m³ within the Morris Mine and up to 5,000 m³ with the Stewart Mine depending on extents. It is proposed that paste is injected via a series of boreholes (some existing and some to be advanced) to fill the void and prevent future subsidence. Note that there will be additional opportunities to further evaluate the conditions within the mines during the pasting program. This information will be used to verify the recommendations provided in this report and adjust the program, as necessary. The methodology for the pasting program procedure will include constructing berms within the mine with coarse granular material, to limit paste placement to relevant areas.

WSP E&I Canada Limited November 2023 Page 29 Once berms are in place, limited volume gravity paste injection should commence to reinforce the berms. Once reinforced, paste injection will continue in boreholes in an upgradient direction. Upgradient borehole adjacent to those having paste injected will be used for monitoring the paste progression, until they are also used to inject paste.

- Depillared panels: The four (4) panels which fully or partially fall within the assessed Phase 1 project area will
 require an engineering solution in order for development to proceed. The solution may include a combination
 of paste mitigation, structural mitigation or avoidance. The path forward for mitigation needs to be further
 discussed based on building locations on these Blocks (23a, 23b, 32a, 32b, 33b). Similarly, parts of these panels
 and additional panels adjacent to the Phase 1 project area may underlie future development Phases.
 Consideration could be given to efficiencies of pursuing mitigation work in these areas at the same time.
- Existing Mitigation: mitigation was completed in specific locations as part of the original plan to mitigate undermining hazards for use as a golf course. It is understood that some of the specific mitigation works that were completed are not formally documented at this time. During the subsequent mitigation works at this site, the location and extent of previous mitigation works will need to be confirmed.

8 CLOSURE

This report has been prepared for the exclusive use of Three Sisters Mountain Village Properties Limited and QuantumPlace Developments Limited. This memorandum is based on, and limited by, the interpretation of data, circumstances, and conditions available at the time of completion of the work as referenced throughout the memorandum. It has been prepared in accordance with generally accepted engineering practices and Alberta Regulation 34/2020 and applicable 2020 Undermining Guidelines approved by the Province of Alberta. No other warranty, express or implied, is made.

Yours sincerely,

James (Jim) Tod, M.Sc.(Eng), P.Eng. Associate Rock Mechanics Engineer Tel: 437-223-5742 Email: james.tod@wsp.com

Review by:

Paul Palmer, P.Eng. Senior Principal Geological Engineer WSP Canada, Inc Tel: 647-525-9763 Email: paul.palmer@wsp.com

Blake Brodland

Blake Brodland, P.Eng. Senior Geological Engineer Tel: 403-387-1981 Email: blake.brodland@wsp.com

PERMIT TO PRACTICE WSP E&I CANADA LIMITED						
RM SIGNATURE: <u>Juncer</u> RM APEGA ID #: <u>29016</u> DATE: <u>10 November 2023</u>	_					
PERMIT NUMBER: P004546 The Association of Professional Engineers and Geoscientists of Alberta (APEGA)	_					

9 REFERENCES

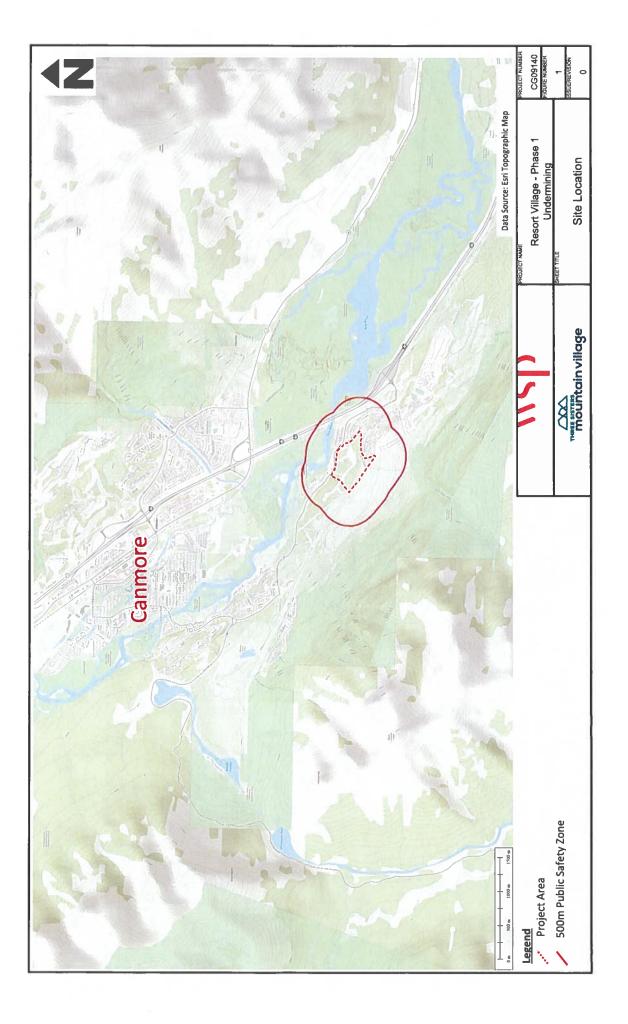
Alberta Energy Regulator (AER), Boreholes from various years, withing LSD 024-10w5

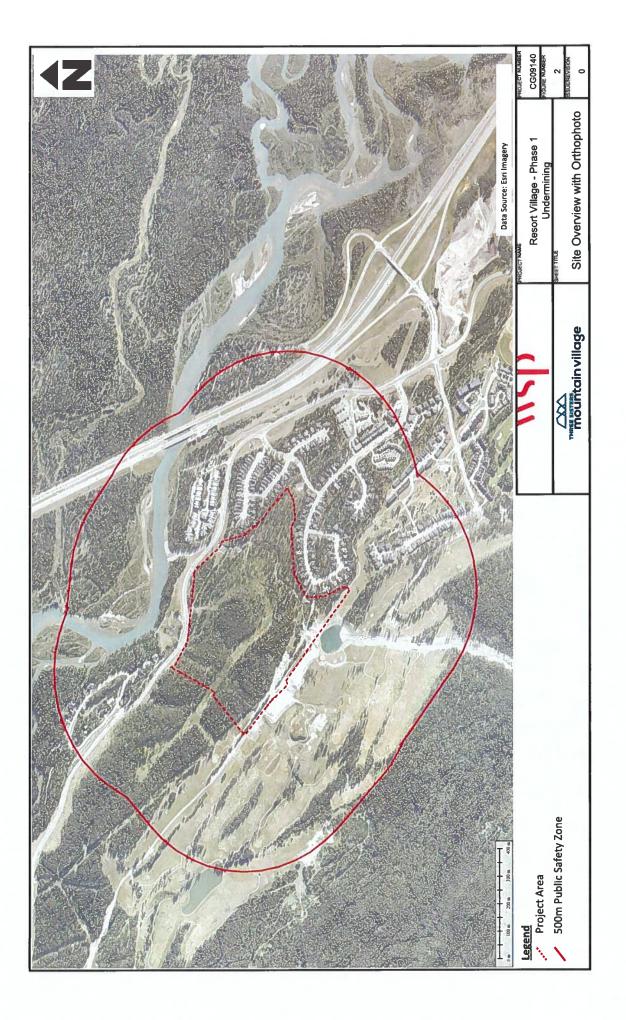
Alberta Energy Regulator (AER), Mine Plans for Canmore area, file names CL_MP,2 and CL_MP,1775

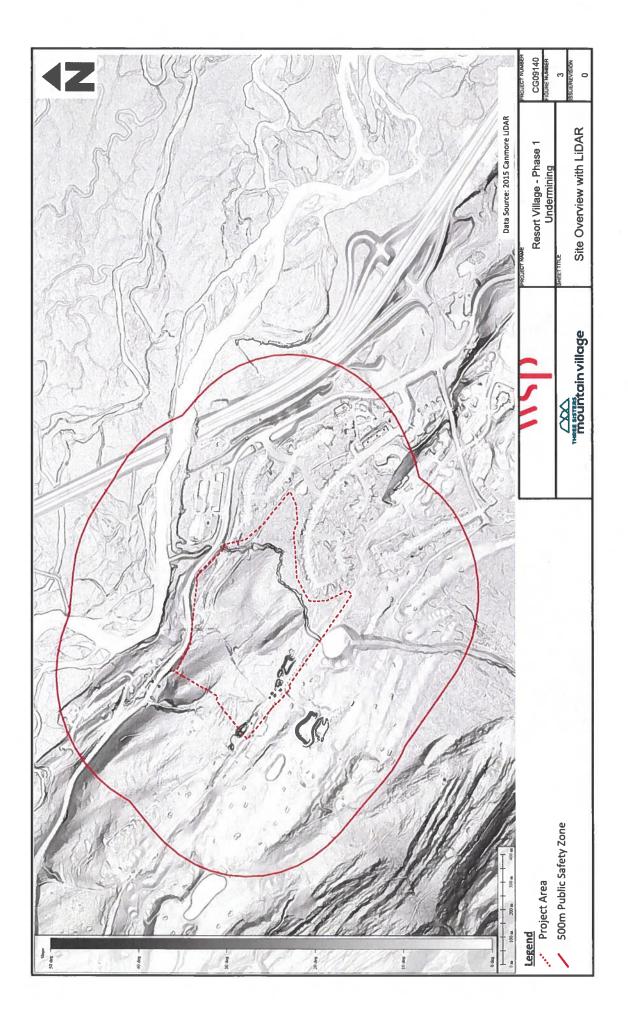
- Barton, N.R., Lien, R. and Lunde, J. 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mech. 6(4), 189-239.
- Carter, T.G. 2000. An Update on the Scaled Span Concept for Dimensioning Surface Crown Pillars for New or Abandoned Mine Workings. Proc. 4th North American Rock Mech. Conf., Seattle, pp.465-472.
- Carter, T. G. (2014). Guidelines for use of the Scaled Span Method for Surface Crown Pillar Stability Assessment. 1st International Conference on Applied Empirical Design Methods in Mining - an ISRM Specialized Conference, Lima, Peru. June 9 – 11, 2014.

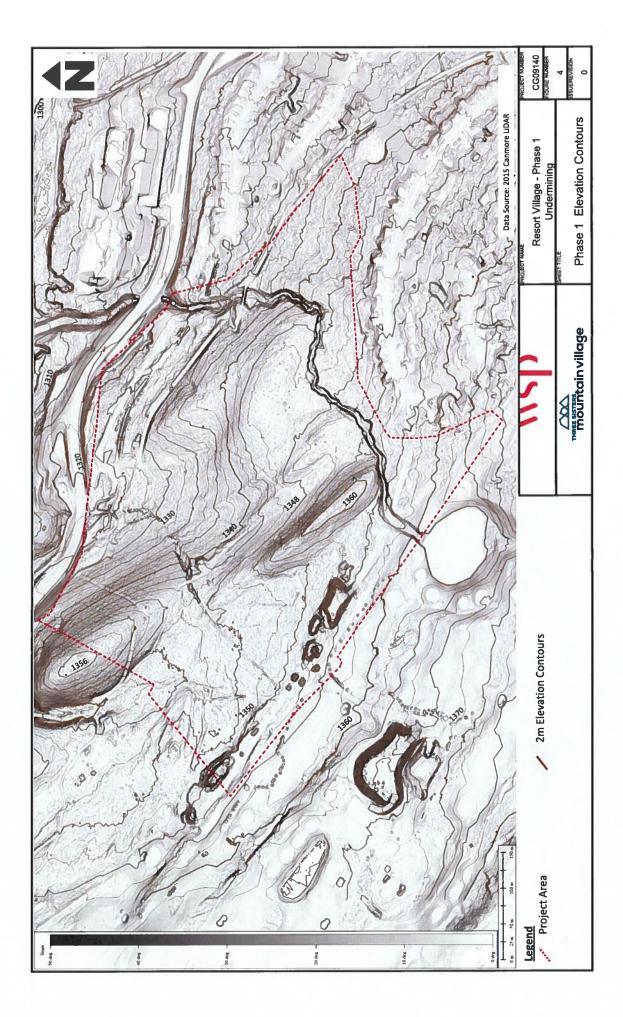
Geological Survey of Canada, Map 1266A, Scale 1:50,000, Published 1970

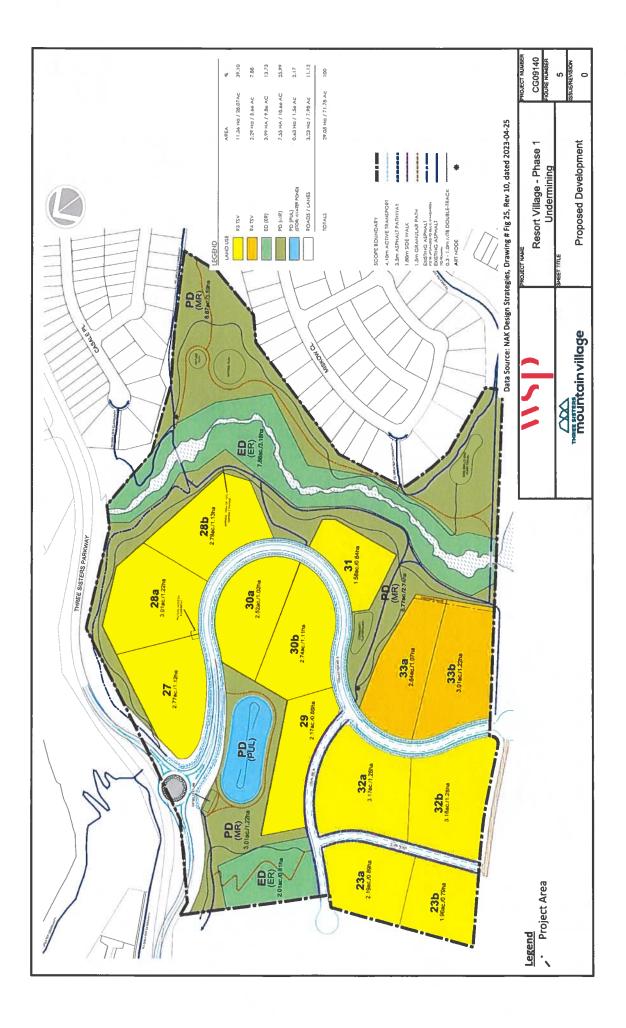
- Golder Associates Limited, 2006. Three Sisters Mountain Village, Stewart Creek Phase 1, Block 14, Lot 1ER, Lot 2MR, Lot 3MR; Block 15, Lot 1MR, Lot 2PUL, Lot 7MR, Lot 9MR; Roads and Utilities Undermining Report, report prepared for Three Sisters Mountain Village Ltd, November.
- Golder Associates Limited, 2005. Three Sisters Mountain Village, Site 2A Phase 2, Roads and Utilities Undermining Report, report prepared for Three Sisters Mountain Village Ltd, March.
- Golder Associates Limited, 2019. Three Sisters Mountain Village, Undermining Report, South Bow Water Main, Tipple site, report prepared for Epcor Water Services inc., Ref. No. 18104795-002-R-Rev0-6000, October.
- Hartman, H.L. 1992. Mining Engineering Handbook, 2nd Edition, Seeley W. Mudd Memorial Fund of AIME Society for Mining, Metallurgy and Exploration.
- IPEX, 2009. Municipal Gasketed Sewer Piping Systems. Product information bulletin Ring-Tite and Enviro-Tite.
- Jacques Whitford, 2006. Three Sisters Mountain Village Hydrogeological Assessment, Report No. ABC62520 report prepared for Three Sisters Mountain Village Ltd, May 29, 2006
- Marino, G.G. 1998. The Siting of a Prison Complex Above an Abandoned Underground Coal Mine, Journal of Geotechnical and Geoenvironmental Engineering, October.
- Mossop, G.D. 1994. Geological atlas of the western Canada Sedimentary Basin, joint publication by the Canadian Society of Petroleum Geologists and the Alberta Research Council, 510 pp.
- Norwest Resources Consultants Limited, 1999. Alberta Transportation and Utilities Three Sisters Interchange Undermining Report.
- Norwest Resource Consultants Limited, 1994. Grassi Three Sisters Area Structure Plan Appendix "F" Geology and the Impact of Mining, Project #90-833, report prepared for Three Sisters Resorts Incorporated.
- Norwest Resource Consultants Limited, 2000. Parkway Contract 3, Undermining Report, report prepared for Three Sisters Resorts Incorporated.

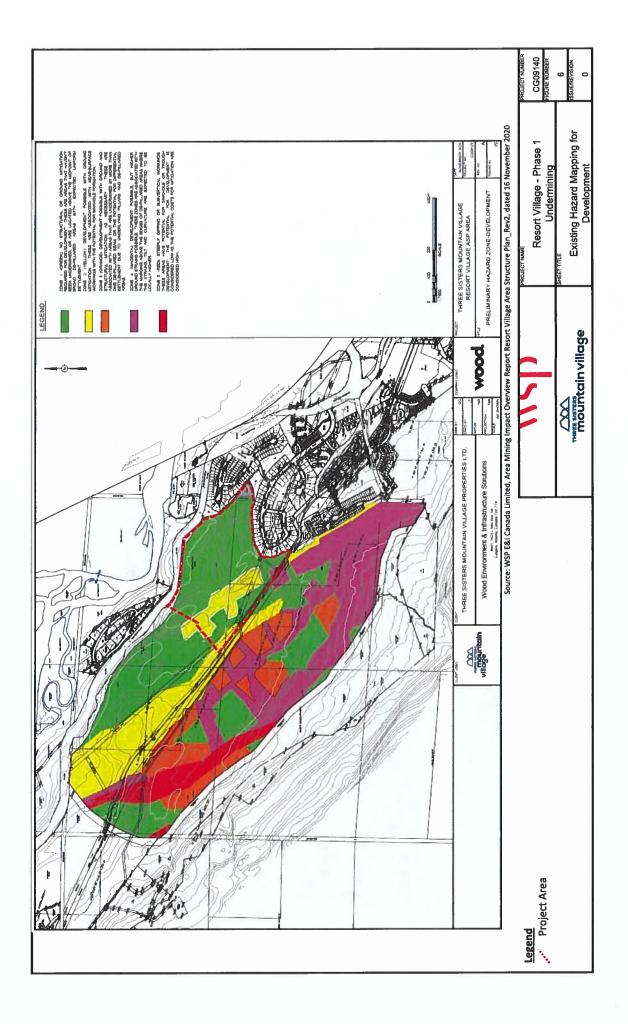

Ofoegbu, G.I, R.S Read, and F. Ferrante, 2008. Bulking Factor of Rock for Underground Openings (Draft), report prepared for U.s Nuclear Regulatory Commission, Contract NRC 02-07-006, February.

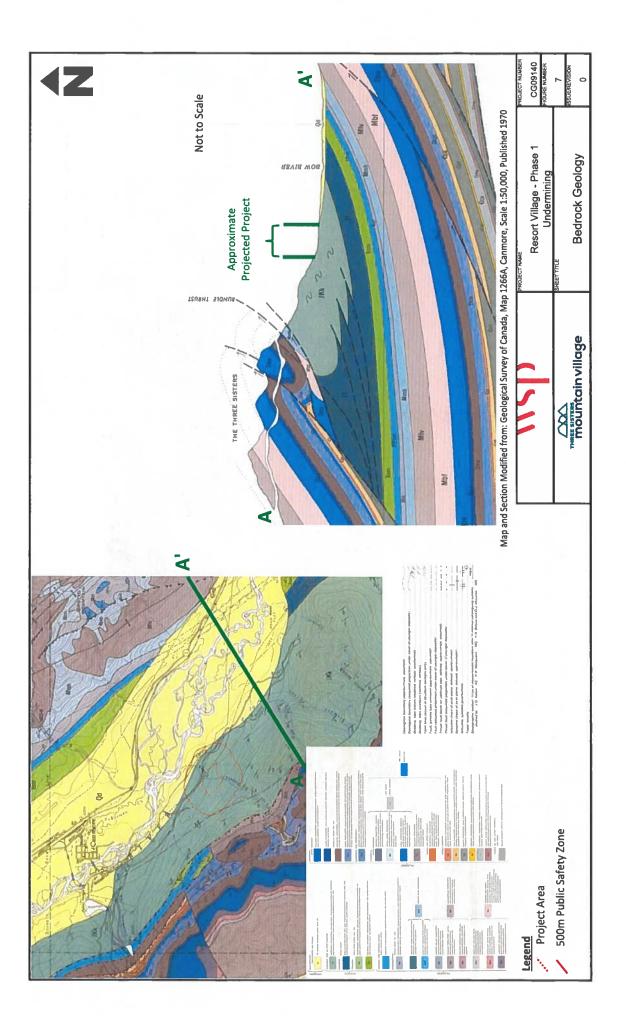

- Peng, S.S. 1992. Surface Subsidence Engineering. Society for Mining, Metallurgy and Exploration, Inc, Littleton, Colorado.
- Peng, S.S., C.T. Holland and Y. Luo. 1994. A new method for designing support area to protect surface structures over underground coal mining areas, SME, Trans. Vol 294, pp. 1927 1932.

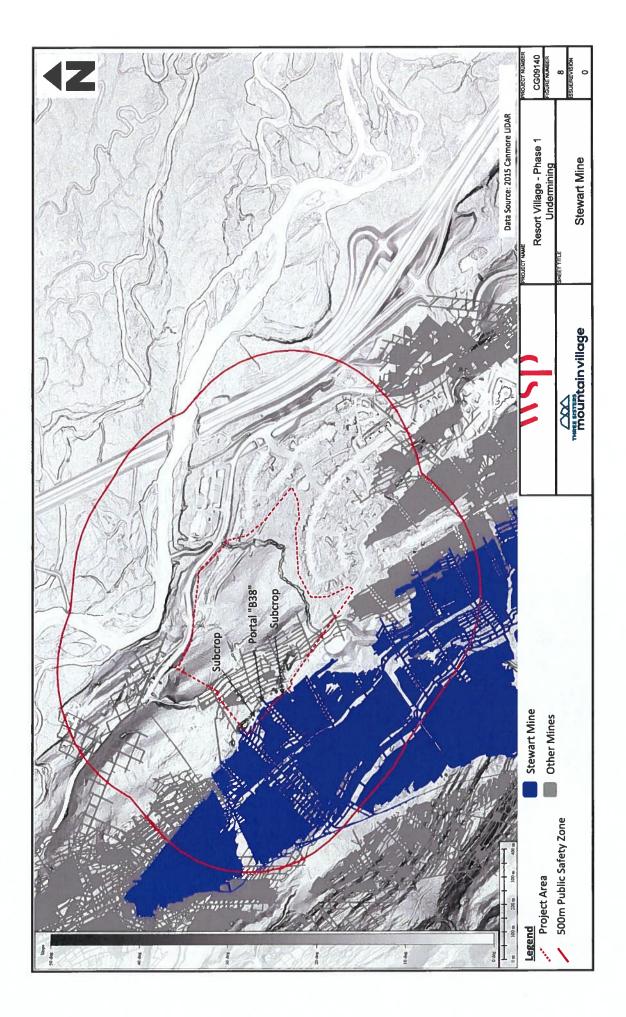

Province of Alberta, LiDAR, flown in 2015.

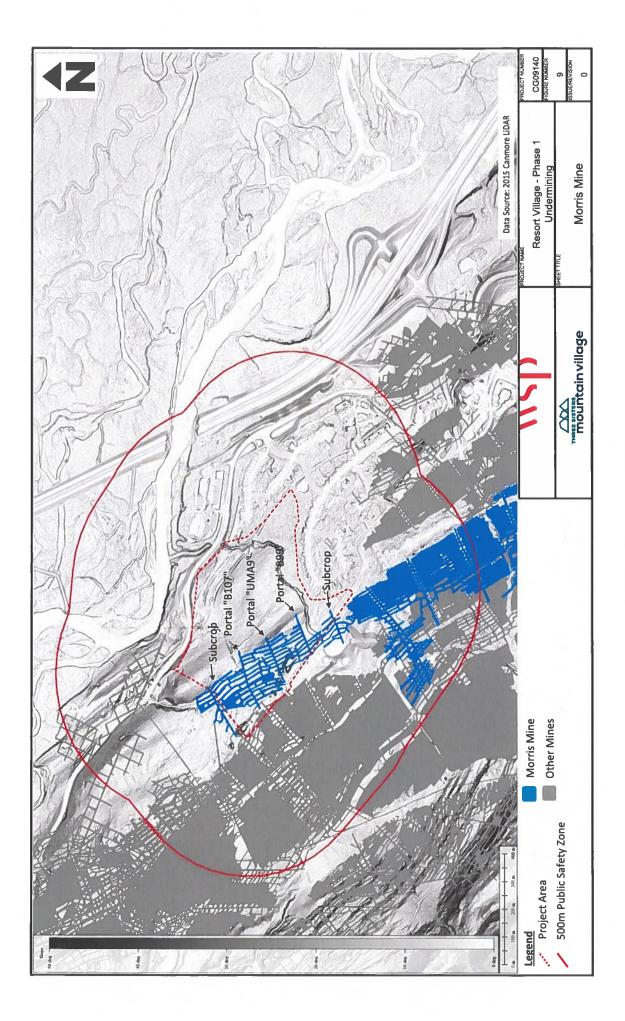

- Stephenson, H.G., Van Den Bussche, B. and Curry, P. 1996. Reclamation, Rehabilitation and Development of Abandoned Mine Land at Canmore Alberta. Technical paper. Canadian Institute of Mining Bulletin. April 1996.
- Town of Canmore. LiDAR and Orthophotos, collected and processed by LiDAR Services International Inc. (LSI), flown June 2013. LiDAR Survey Report issued 12 July 2013.
- Wood Environment & Infrastructure Solutions. 2020. Area Mining Impact Overview Report, Resort Village Area Structure Plan_Rev2. File Number CG09125. 16 November 2020.

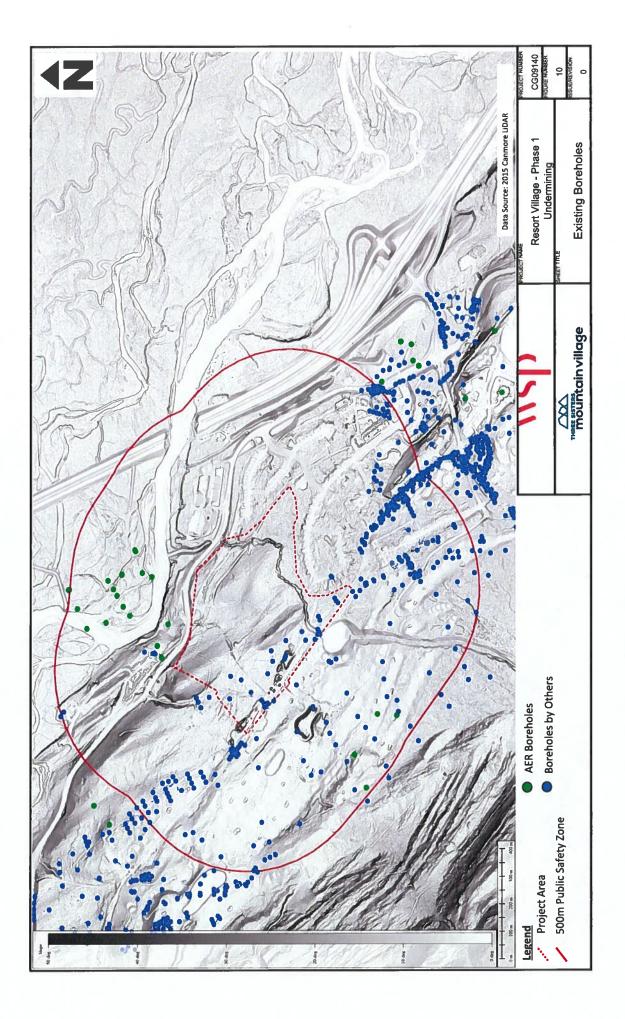


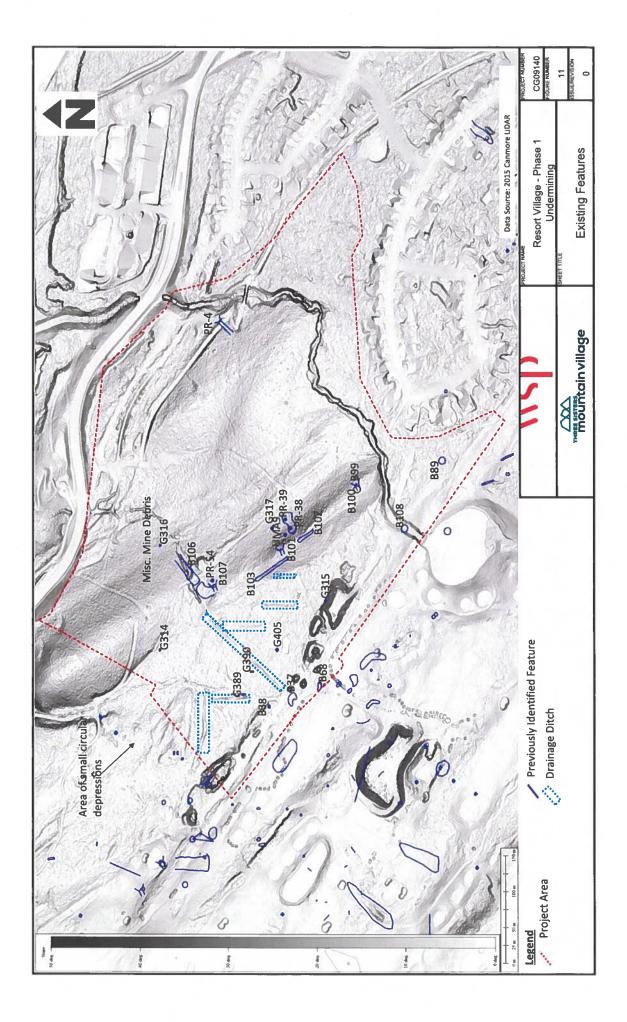


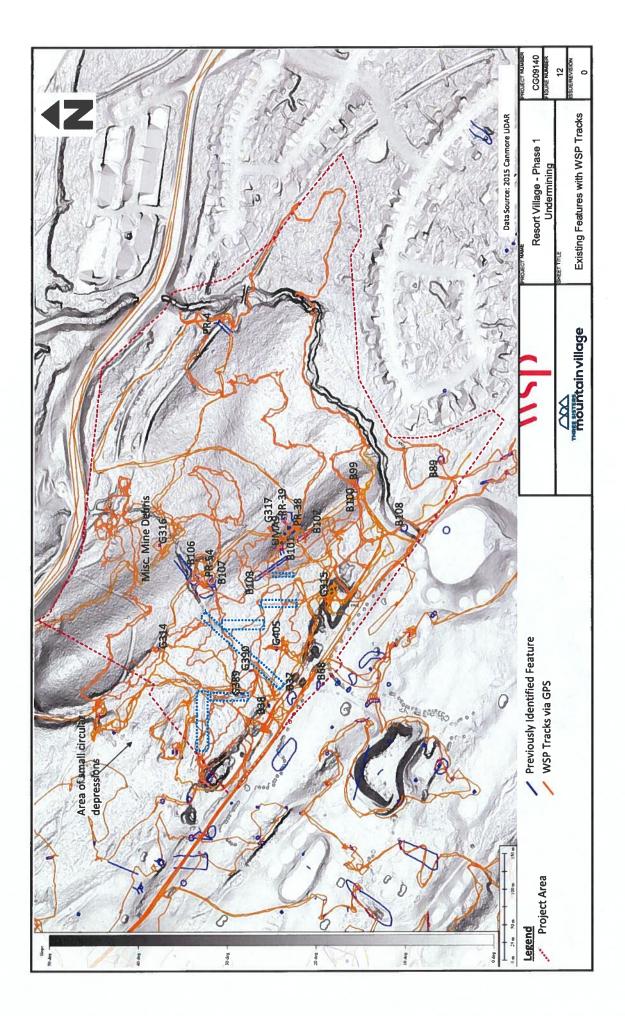


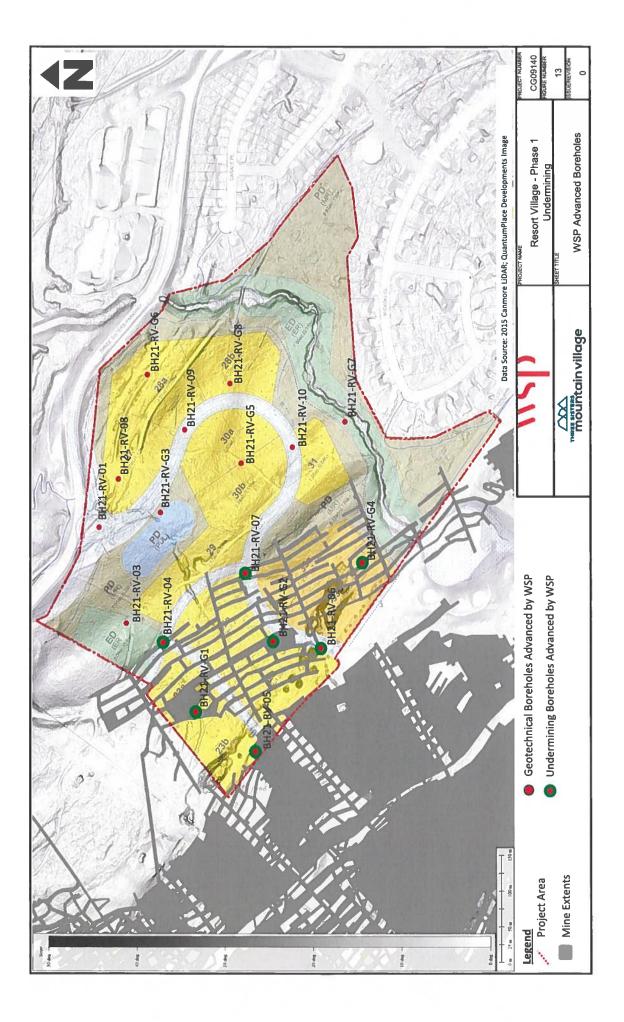


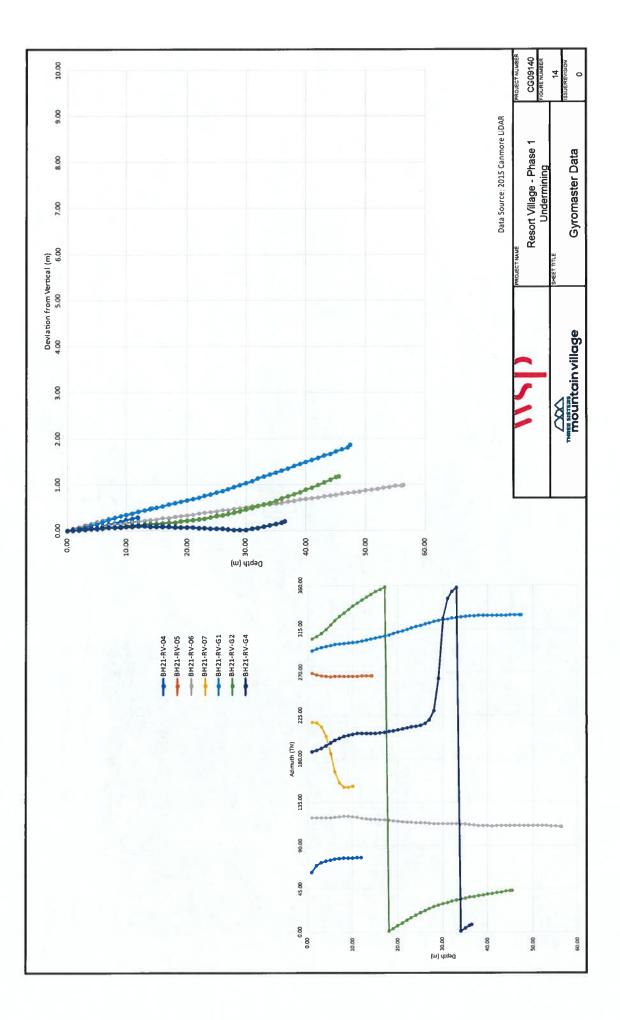


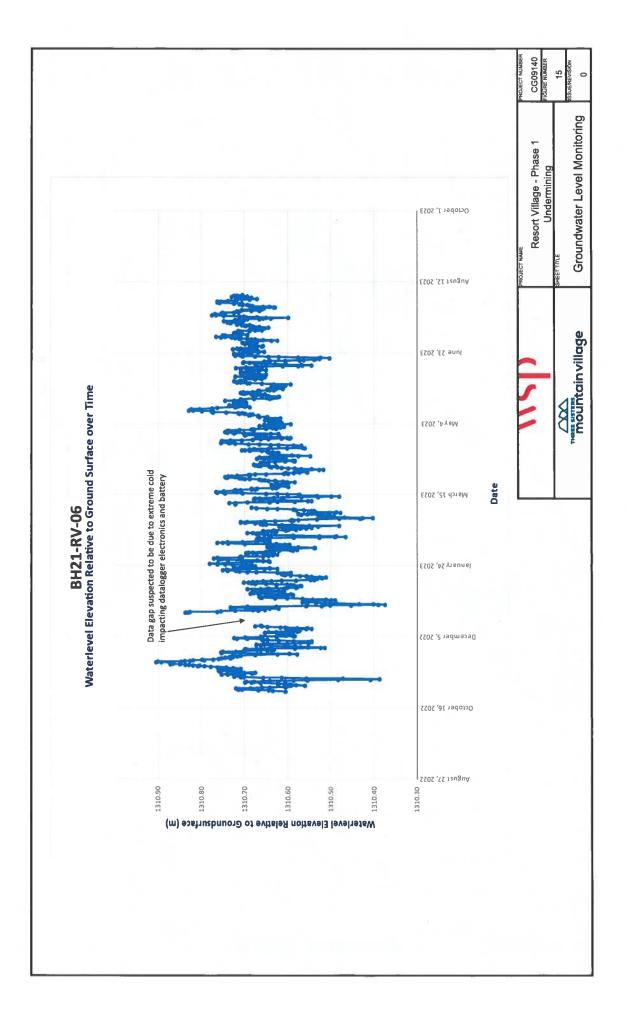


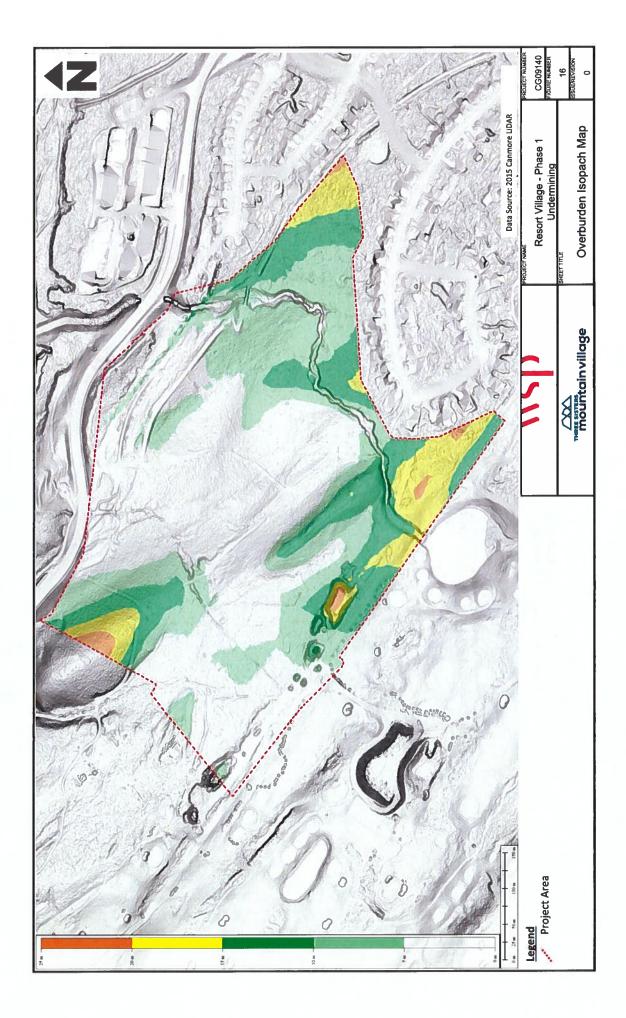


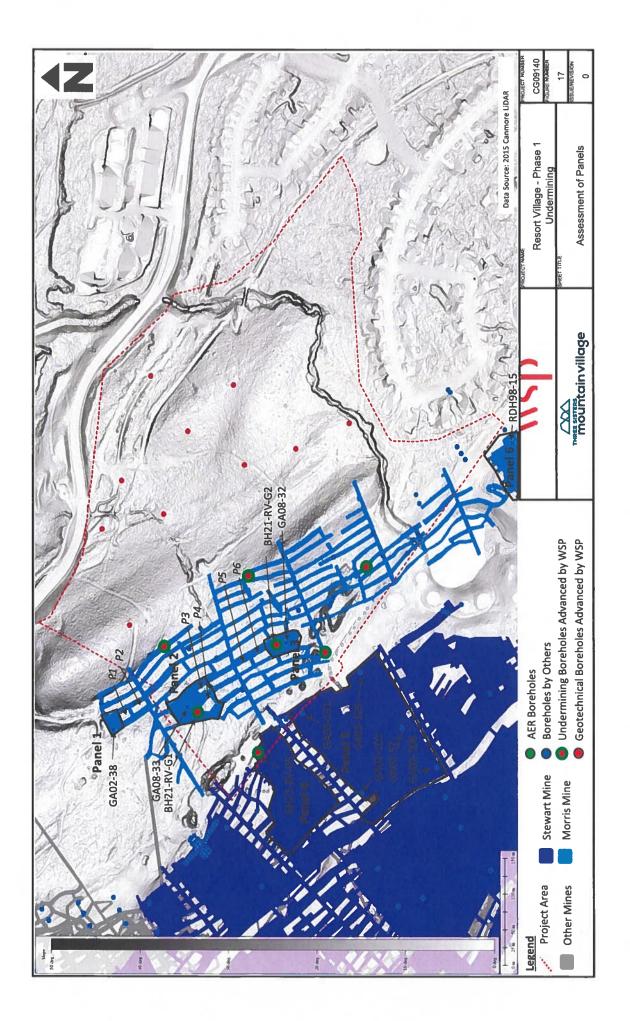


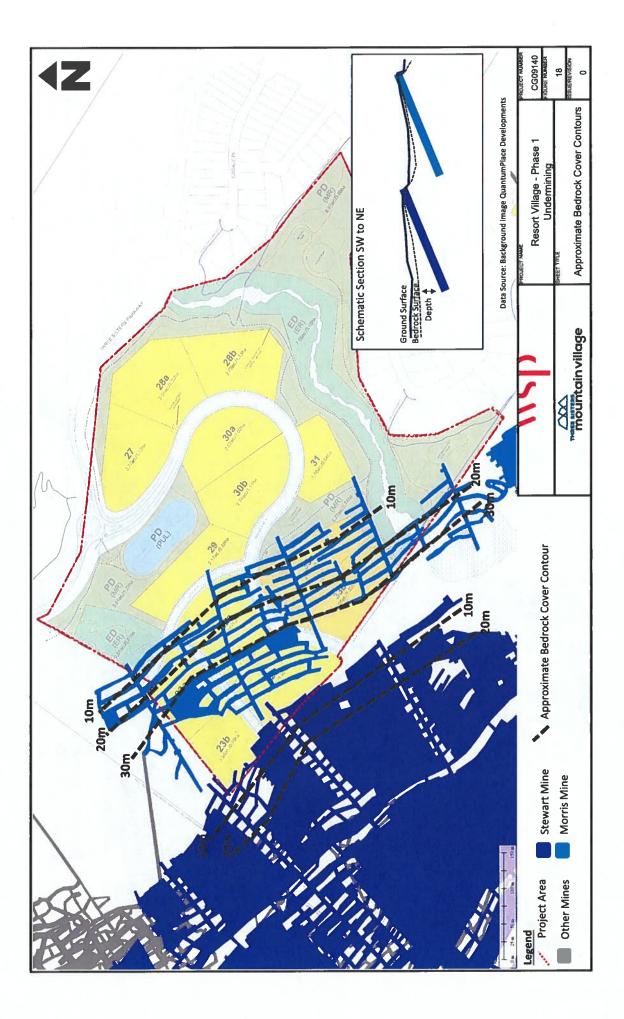


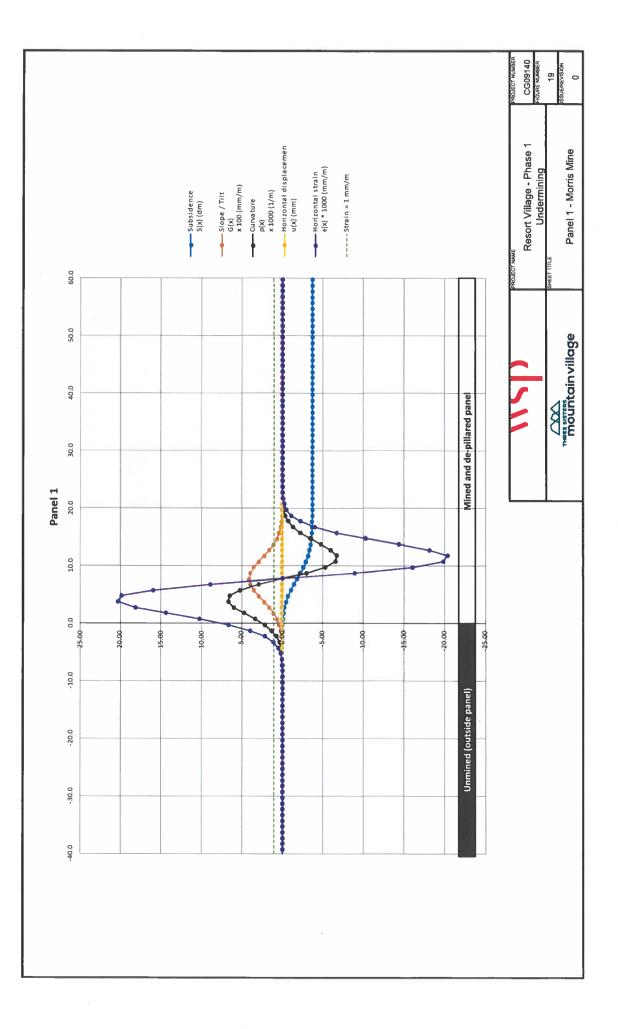


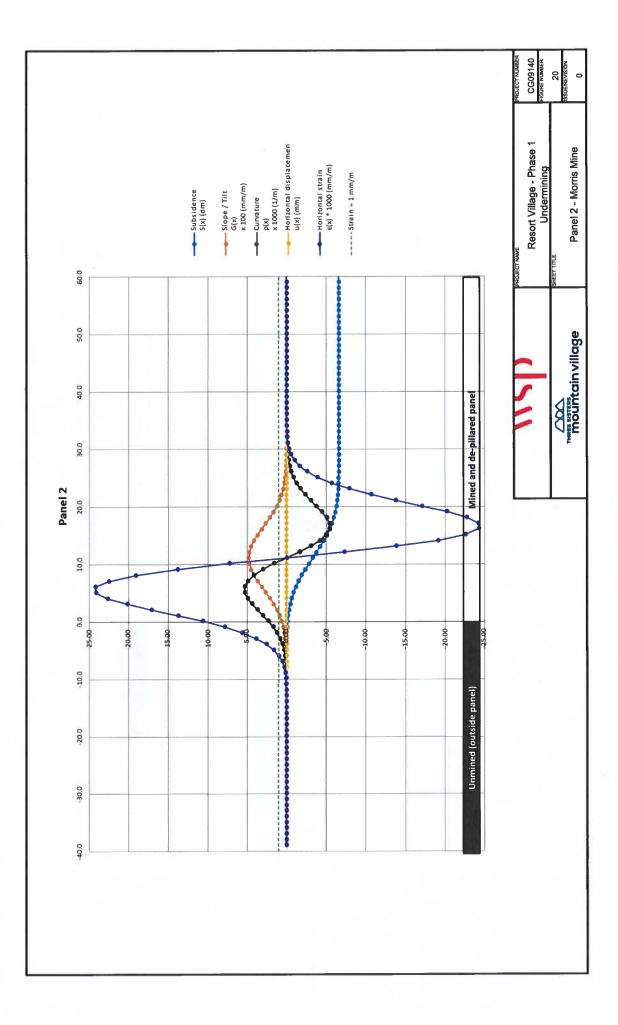


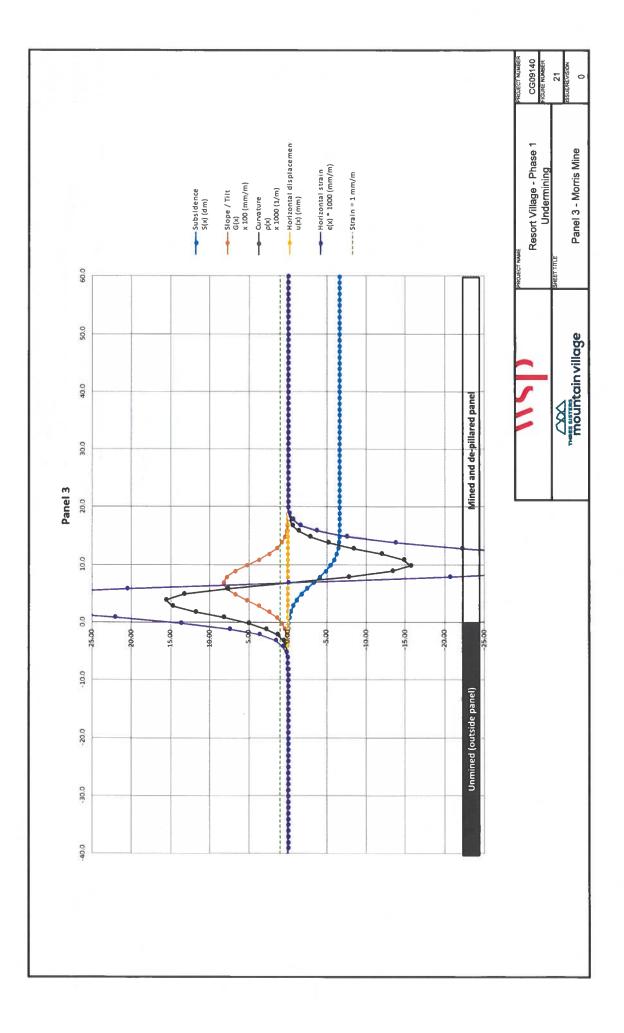


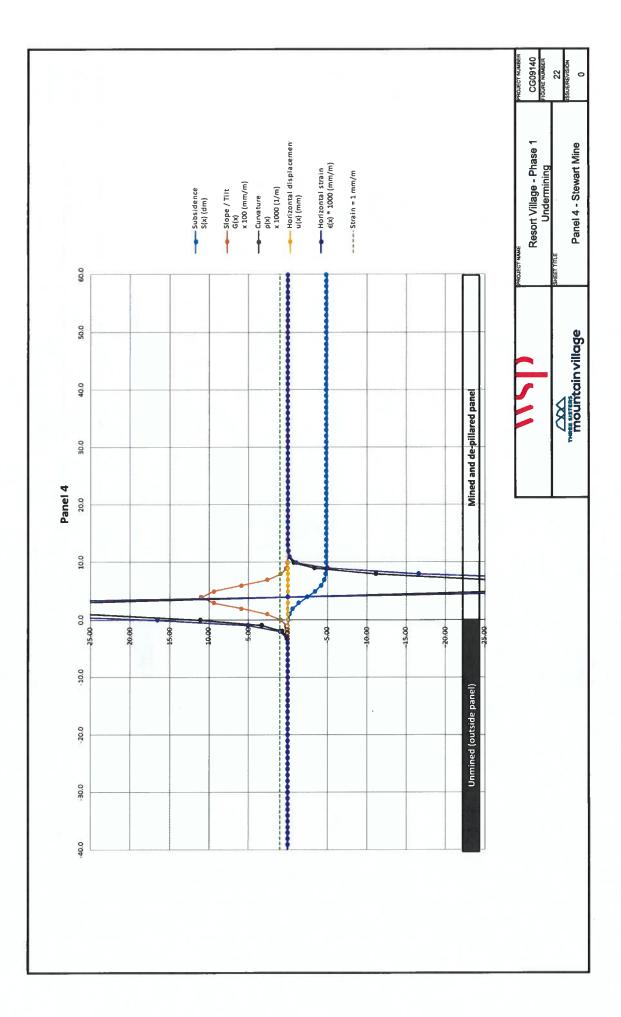


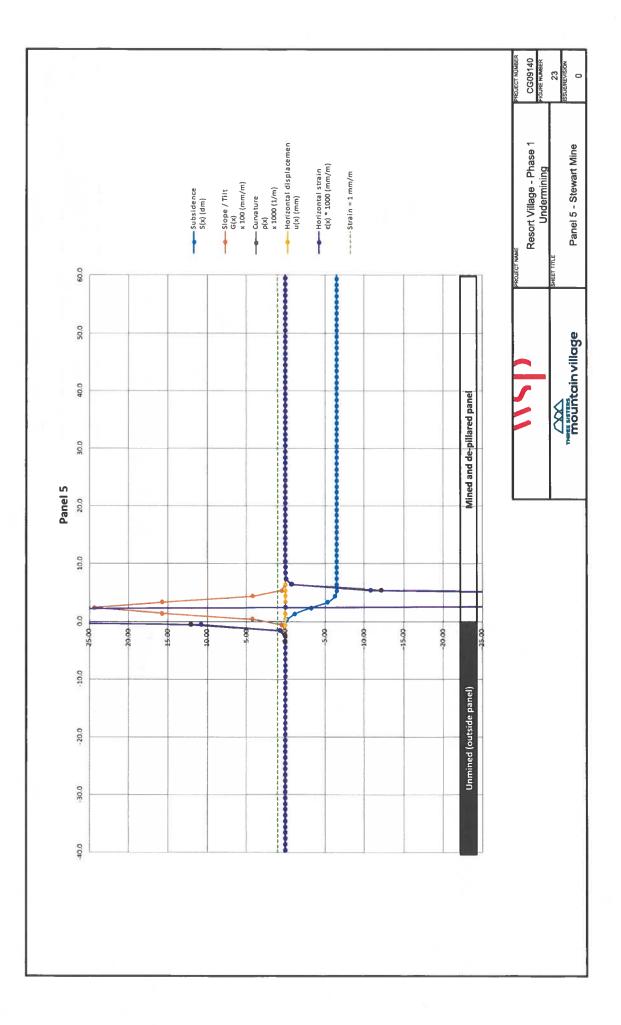


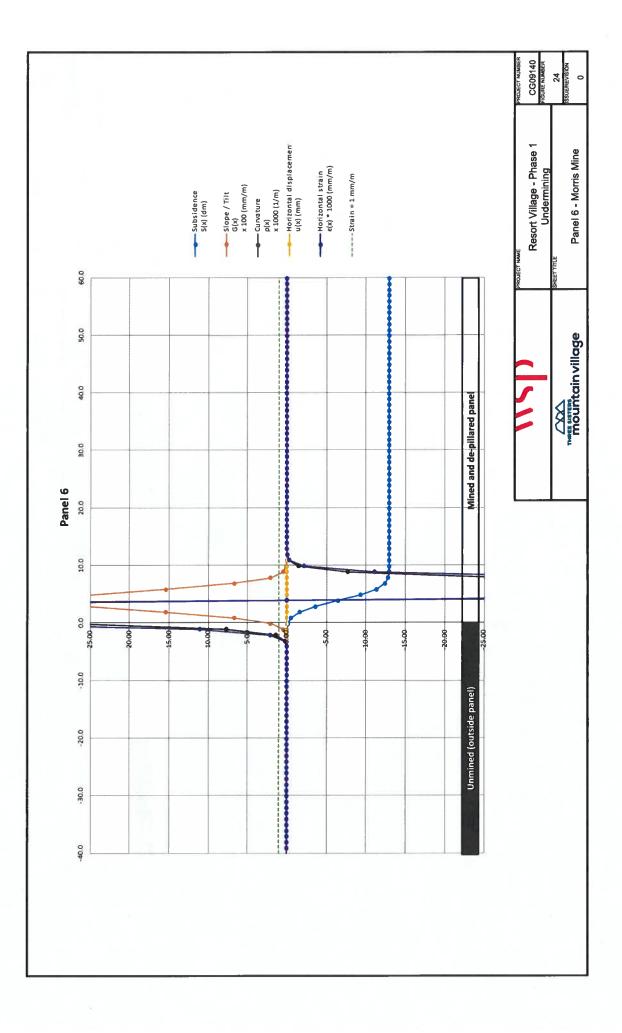


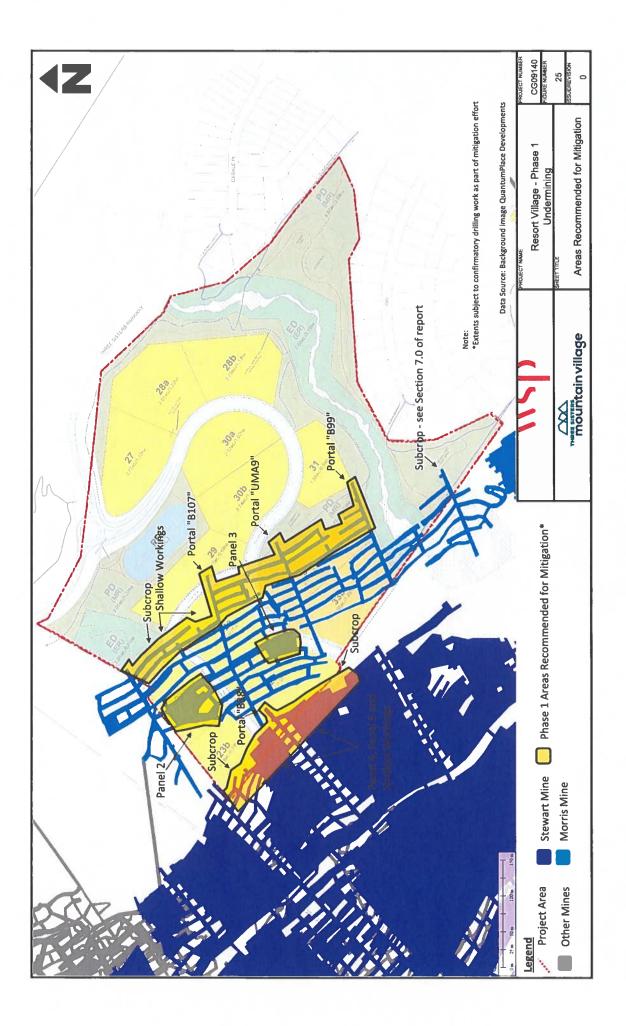






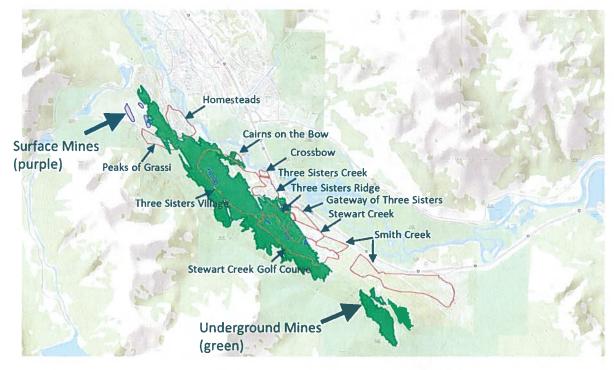






Appendix A

Mining History

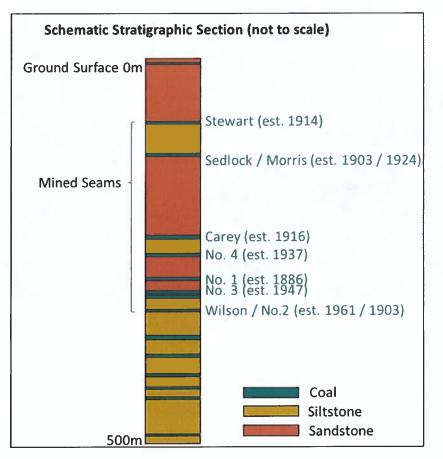


Appendix A – Mining History and Geology

1.0 INTRODCTION

Coal mining in the Canmore area began in the late 1800's to support the steam powered transcontinental Canadian Pacific Railway that ran through the Bow Valley. The anthracite and low volatile bituminous coal found in the Canmore area was ideal for use with steam engines, and was burned from Kamloops, BC to Medicine Hat, AB. Production expanded through the First and Second World Wars but declined in the 1950's as the railway converted to diesel power. This transition was completed by 1957, resulting in a steep decline in demand. A second market for Canmore coal was found in supplying metallurgical coal for Japanese steel mills. Production continued until 1979, when competition and reduced demand led to a drop in the price of coal and subsequent closure of the Canmore mines.

Coal production in the Canmore area came from multiple mines and seams. These are listed in chronological order of start date in Table A1. The mined areas are shown in plan in Figure A1, and a simplified schematic of the stratigraphic relationship of the mines and seams is presented in Figure A2.



WSP E&I Canada Limited #401 – 1925 18th Street NE Calgary, AB T2E 7T8

wsp.com

Seam	Mine	Thickness (m)	Mining Date (planned)
No. 2 Seam	No. 1	2.13	1886 - 1907
No 1 Seam	No. 1	1.72	1891 - 1916
No. 4 seam	No. 1	0.9	1892 - 1911
No. 3 Seam	No. 1	1.52	1892 - 1916
Sedlock Seam	No. 2	1.8	1903 - 1915
Carey Seam	No. 1	2.75	1906 - 1916
Stewart Seam	No. 2	2.13	1914 - 1952
Carey Seam	No. 2	2.75	1916 - 1934
Morris No. 1 Seam	No. 2	2.0	1924 - 1941
Morris No. 2 Seam	No. 2	2.0	1929 - 1940
No. 4 Seam	No. 4	1.8	1937 - 1949
No. 2 Seam (?)	Wilson	3.8	1969 - 1979
Stewart Seam	No. 5	1.8	1965 - 1974
No. 4 Seam	No. 4B	1.8	1972 - 1979
No. 4 Seam	Riverside	1.8	1976 - 1979

Three Sisters Mountain Village Properties Limited c/o QuantumPlace Limited CG09140

WSP E&I Canada Limited February 2023 Page 2

2.0 REGIONAL AND LOCAL GEOLOGY

The geology of the Canmore area is well-described by Norwest Mining Consultants (2000); the discussion from that report is summarized in the remainder of this section.

Canmore is situated in the Cascade Coal Basin, which trends in a northwesterly direction for a distance of approximately 80 km within the front ranges of the Rocky Mountains. The Canmore area is located in the northern part of the basin, on the southwest side of the Bow River Valley. The stratum in this area belongs to the Lower Cretaceous Kootenay Group, which are exposed in northwest trending ridges and associated depressions (Figure A3).

The Mist Mountain Formation is the coal-bearing unit within the Kootenay Group, consisting of fine-grained sediments including siltstone, fine sandstone, shale, and coal seams in a sequence up to 400 m thick. The depositional environment is interpreted to correspond to continental, near-shore lagoonal and fluvial deltaic facies, with coal forming back swamps. This coal-bearing section is overlain be the Elk Formation, a 600 m thick unit of fine-grained sediments. In the Cascade Coal Basin, the contact between the units is gradational, coarsening upwards. While there are thin coal seams in the lower part of the Elk Formation, mineable thicknesses are not present.

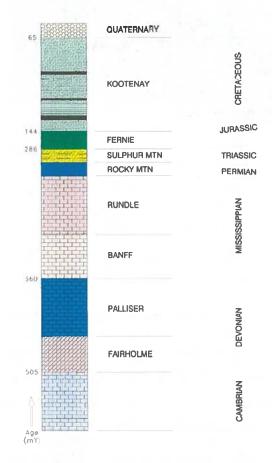
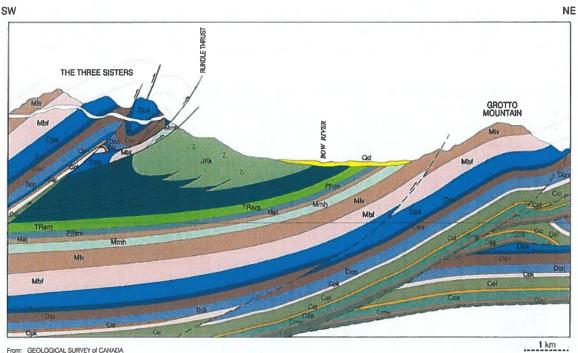



Figure A3. Stratigraphic Sequence of the Cascade Coal Basin (Norwest, 2000).

Locally, the Cascade Coal Basin (Figure A4) is bound to the west by the Rundle Thrust Fault, which has overthrust older beds over the younger Kootenay Formation. Folding and thrusting have also created repetitions in the strata in the area. To the northeast, the basin is bounded by the Paleozoic carbonate rock rocks of the Fairholme Range.

From: GEOLOGICAL SURVEY of CANADA Diagrammatic Structure Section 2 (in part) Accompanying Maps 1265A and 1266A, Canmore

Figure A4. Cross Section through the Cascade Coal Basin at Canmore (after Geological Survey of Canada).

As noted in the earlier section, there are at least 13 coal seams of mineable thickness, ranging from 1 to 4 m. These seams are not continuous, and only a few were mineable based on structure and coal quality.

Coal quality ranged from low volatile bituminuous to semi-anthracitic in rank. The higher rank in this area relative to adjacent areas is thought to be due to local thermal upgrading associated with the Laramide Orogeny. The coal rank increases with stratigraphic depth.

The seams mined are shown in Figure A2, with interseam strata of calcareous dark grey to black thinly bedded siltstone and shale, as well as very fine-grained sandstone. Localized coarse-grained sandstone and minor congolomerate are also present. Carbonaceous mudstone occurs directly with the coal, usually at the contacts.

Surficial deposits range in thickness between 2 and 28 m, consisting of glacial till, sand, gravel, and colluvium.

The Late Cretaceous to Early Tertiary Laramide Orogeny is also associated with deformation of the sedimentary strata in the region. Major fault blocks are separated by southwest dipping thrust faults, with further deformation through folding and smaller scale thrust, normal, and wrench faults. The coal-bearing strata within the basin lie within the Lac des Arc Thrust plate and have been deformed into a northwest-trending overturned fold referred to as the Mound Allan Syncline. The axial plane of the syncline dips to the southwest parallel to the major faults. The northeast limb of the faults dip gently to the southwest at between 10° and

WSP E&I Canada Limited February 2023 Page 4

40°, whereas the strata in the southwest limb are vertical to overturned. The fold plunges gently to the southeast.

The coal-bearing strata within the core of the Mount Allan Syncline are buckled into a series of similarly trending folds, and some are recumbent. Thrust faulting is common, with the fault planes oriented to the northwest, in line with the general fabric of the southern Canadian Cordillera. Normal and wrench faults are often oriented perpendicular to the trend of the thrust faults, and smaller scale folding is observed associated with these smaller normal and wrench faults. The strains associated with folding and the mountain building process manifest as bedding slip surfaces, cleat and joint systems, and in the faults.

The coal seams are more incompetent, and so were more readily deformed than the host rock. Seams tend to thin on the flanks of folds and thicken in the cores. Shearing at the top and bottom contacts has often destroyed the depositional fabric of the seams, and slickensides are present within the seams. Cross jointing perpendicular to bedding is pervasive, with spacing ranging from a few centimetres to over 1 m.

Displacement on normal faults is on the order of 1 to 2 m, although offsets can be as high as 20 m. These faults usually cut the coal at about 60° dip, in contrast to the thrust faults that cut the seam at about 30°. The thrust faults also exhibit much larger displacements, with measurement up to 80 m.

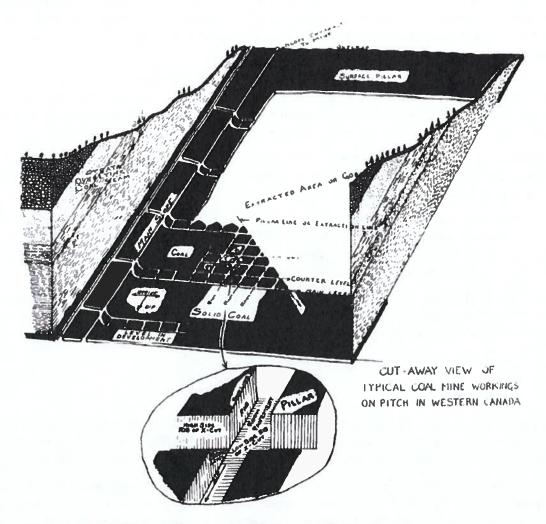
Mining limits were usually defined by geologic structure and/or coal seam quality. Structurally, limits could be induced by severe folding, faulting, and the depth of the seam. At the outer limits of the seam, the subcrop defined the mining limits. Large faults often caused such deformation to the seam and the surrounding strata that economic mining was not possible, limiting the extents of the mine development.

Below 220 m depth, "blowouts" associated with excessive ground pressure and low-strength coal were encountered. These resulted in expulsion of methane and coal fines from the coal face. The maximum mining depth in the region is approximately 350 m.

3.0 COAL MINING IN THE CANMORE AREA

3.1 GENERAL

To better understand the potential for subsidence, it is important to understand the configuration of the mines and the extraction sequence. A good description was provided by Norris (1953) for his Ph.D. dissertation and is paraphrased herein. For reference, a sketch of a typical coal mine in Western Canada is shown in Figure A5.


The *main slope* (main ramp / decline) was the principal haulage artery for each operation. This haulage was well protected with large pillars to ensure that it remained open during operations. From the slopes, *levels* were driven at regular intervals along the strike of the seam; in the Canmore area the main levels are referred to as *Gangways*, which followed the strike of the coal seam and were used for haulage.

For ventilation at the working face, a counter level (counter) had to be developed approximately 80 to 100 ft (28 – 30 m) up dip from the level. The counter and the level were connected by *rooms* that were also typically 100 ft (30 m) apart. Rooms were driven from one level to the next and driving cross cuts parallel to the counter at regular intervals, creating large pillars. Any of the four sides of a pillar was known as a *rib*.

The roof of the rooms were supported by *posts* fitted against the ribs with a *boom* connecting the top of the posts. When the roof could not support its own weight, it was said to be *heavy*, and the sets were placed closer together. Timber slabs (*lagging*) were inserted between the booms and the overlying roof strata.

For the extraction of pillars, a systematic *pillar line* or *extraction line* was maintained. A *skip* was a successive strip taken off each pillar. For control of the roof slab into the gob or extracted seam, props were placed tightly to the roof and floor close to the working face. To prevent overall rapid collapse of the roof into the gob, *sacrifice pillars* or stumps were left behind. These stumps yielded slowly and allowed a gentler convergence of the roof into the gob.

Figure A5. Sketch showing typical mine layout for Western Canada (Norris, 1953)

As almost all the development occurred within the coal seam, the development process typically resulted in a recovery of between 20 and 40% of the coal. With de-pillaring, the recovery could increase up to 100% over small local areas, but generally was in the range of 50 to 75% over a mined area. The geological conditions for coal mining in Canmore were quite complex. In some cases, only mining of development and rooms was completed; de-pillaring was not attempted in these cases due to a combination of factors including poor ground conditions, poor coal quality, and general economics at the time of mining.

Using the dip of the coal seams, blasted coal was transported to the haulage level by chutes and loaded into mine cars that were hauled to surface initially by rope haulages and later by compressed air locomotives.

WSP E&I Canada Limited February 2023 Page 6

Continuous miners were introduced at the Wilson Mine in the mid 1960's; however, steeper seam gradients caused issues for the equipment, and the mine switched to the use of slushers (cable-controlled scraper). This switch was effective at the mine and was particularly useful when de-pillaring (Stephenson *et al*, 1996).

3.2 STRESS REDISTRIBUTION

To understand how subsidence can occur, it is important to understand the state of stress in the rock and its response to the extraction and void creation associated with mining. Prior to the commencement of underground mining, the stress state in the rock mass is in equilibrium. The creation of voids within the rock mass disturbs the equilibrium of the stress state, and the stresses are required to re-adjust. For mines in Canmore, the main stress is typically the load of overlying materials on the coal seam, but there may be some locked in tectonic forces or compression associated with prior glaciation. In the initial development and excavation of the rooms, the openings are small, and the load from the overlying material spans the small opening and is transferred to the sidewalls, aided by the posts/booms and any ground support (i.e. rock bolts) installed into the roof.

With the commencement of de-pillaring, the width of the roof span increases beyond the limit that is stable without support. The rock from the roof begins to relax and, if not supported, will collapse. In the short term, this collapse is prevented by ground support in the form of bolting and/or props, but after extensive de-pillaring, the roof will eventually yield. At first, this expansion is elastic, but with time the deformation becomes plastic as the roof material fails into the opening. The remaining stress is carried by the stump pillars, which yield slowly, and to the abutments, which are sized to remain stable. Often the failure of the immediate roof was encouraged in the de-pillared areas as it reduced the degree of load increase onto the adjacent abutment pillars, allowing them to remain stable.

Most of the plastic failure was assumed to come from the roof of the deposit. However, in some operations where precise leveling surveys were used, it was possible to measure the change in position of both the floor and the roof. In the No 4 mine (which overlies the Wilson seam), at deeper portions of the mine (between 225 and 350 m bgs) where only sacrifice pillars remained, the observed mining void height of 10 ft (3 m) was found to close to a residual void of 1 ft. Based on the leveling surveys, only 3 feet (1 m) of the failed material was found to come from the roof. The remaining 6 feet (2 m) of closure came from uplift of the floor of the depillared area (Norris, 1953). Given the glacial history of the Canmore area and the locked-in stresses that occur elsewhere due to glaciation, the description of floor uplift is not surprising.

4.0 REFERENCES

Norris, Donald Kring (1953) Structural conditions and violent stress relief in coal mines of the southern Canadian cordillera. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/K08S-Y213. https://resolver.caltech.edu/CaltechETD:etd-05082003-101319

Norwest Resource Consultants Ltd. 1994. Grassi – Three Sisters Area Structure Plan, Appendix F, Geology and the Impact of Mining Report, prepared for Three Sisters Resorts, Inc., dated December 6.

Norwest Resource Consultants Ltd. 2000. Clubhouse Hill Undermining Report, prepared for Three Sisters Resorts, Inc., dated May 25.

Stephenson, H.G., B. Van Den Bussche, and P. Curry. 1979. Reclamation, rehabilitation, and development of abandoned mine land at Canmore, Alberta. CIM Bulletin, pp. 57-64. April.

Stephenson, H.G, C.W. Gregory, and W.J. Riva. 1972. Pillar extraction in thick coal at Canmore, Alberta, on gradients between 5 and 30 degrees. CIM Bulletin, pp. 55-62. November.

Appendix B

Ground Deformation

Appendix B – Ground Movement and Deformation

1.0 INTRODUCTION

In this appendix, the deterministic methodologies behind the calculations for the ground movement and deformation for the undermined areas around Canmore are presented. These methodologies include determining sinkhole development potential and the degree of ground movement and deformations associated with panel sag over the mining panels.

Undermining assessment of the Three Sisters properties have been ongoing since 1997, with work initially done by Norwest Consultants and later by Golder Associates Ltd. (Golder) Over time, the understanding of site conditions has evolved based on observations and investigations. The methodologies and approaches used by Golder have been evaluated and are considered appropriate for application to the current site, with occasional modification based on the experiences of WSP engineers and the site understanding from Norwest reports and analyses. These methodologies are described in the following sections.

2.0 CAVING AND SINKHOLE FORMATION

Sinkhole development is associated with the chimneying failure of the rock mass above a void below the ground surface. This type of failure is often circular in nature in the rock; however, the shape of the surface expression of the failure can change in the overlying soils, depending on their nature. Assessment of the potential for development of sinkholes considers both the stability of the rock above an underground excavation, and the bulking associated with failure into the void.

2.1 STABILITY ASSESSMENT OF THE ROOF

Initiation of a roof failure depends on the stability of the material above the excavation, known as the crown pillar. The Scaled Span crown pillar assessment is an approach developed in the 1990's to assess the stability of active and historic crown pillars with consideration to populated areas or with public access (Carter et al., 1995; Carter et al., 2000; Carter, 2014). The approach is an empirical assessment based on a database of stable and failed crown pillars in a variety of rock types and range of rock quality. An assessment of intact and failed crown pillars discovered that increased stability is associated with an increase in crown pillar thickness (in rock), horizontal (clamping) stress, and dip of the sides of the underlying walls. By contrast, crown stability is reduced by increases in crown pillar span, overall length of the opening, mass (specific gravity) of the overlying material, and increases in groundwater pressure. In assessing the stability of the near-surface tunnels (slopes and accesses) in the Canmore area, the opening sides are typically vertical, the span is the width of the tunnel, and the length is long relative to the width.

The Scaled Span for an excavation is determined by normalizing the series of parameters using the relation:

WSP E&I Canada Limited #401 – 1925 18th Street NE Calgary, AB T2E 7T8

wsp.com

X:\CA\DCCAN100-CAL1\CAL1-EE-GEO\Projects\Calgary Geo\CG09140 - Resort Village Phase 1 Undermining\05 - Undermining Data\05 -Reporting\Rev0_current\Appendix B - Ground Deformation\Ground Movement and Deformation Appendix B_20231026.docx

The Scaled Span for an excavation is determined by normalizing the series of parameters using the relation:

$$C_s = S\left\{\frac{\gamma}{t(1+S_R)(1-0.4\cos\theta)}\right\}$$

Where:

C_s = the Scaled Span

 γ = specific gravity of the rock mass

t = thickness of the crown pillar

 S_R = Span Ratio = Span/Strike Length

 θ = dip of the orebody (90° for a tunnel)

When the strike length exceeds the span by a large amount, the Cs expression devolves into a 2D case, suitable for use for tunnels. The normalized scaled span,Cs (m) is plotted against NGI's rock mass quality, Q, as shown on Figure B1. This gives an indication of the potential stability of the current crown configuration based on a comparison of failed versus stable cases.

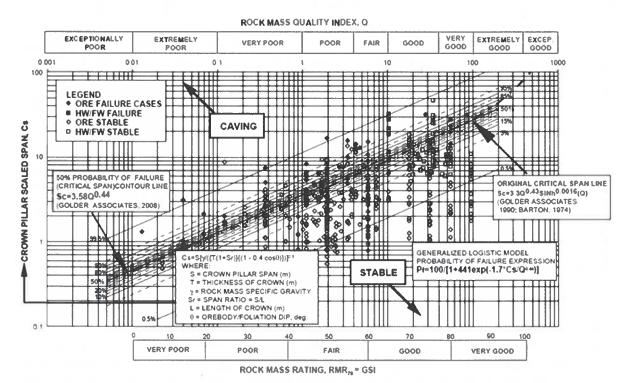


Figure B1. Scaled Span Chart showing Probability of Failure Contour Intervals (Carter, 2000)

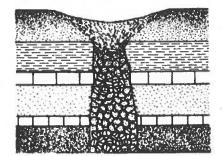
Using the Q value for the rock mass, it's possible to determine the widest critical span Sc (m) via the relation:

$$S_c = 3.3 * Q^{0.043} * (\sinh Q)^{0.0016}$$

When the Scaled Span (Cs) is less than the critical span (Sc), the crown pillar is considered stable. The ratio of the scaled span to critical span gives the factor of safety for the crown. Determinant regression of case histories has

also been used to determine the Probability of Failure, and a classification system based on use and risk, as shown in Table B1. From this table, for long term public access, the crown pillar above an existing tunnel should have a rating that fits into Class F or G, shown in the red box, with a Probability of Failure of 1.5 % or less. Crowns with a class lower than this are susceptible to chimney failure, and can be assessed using the methods in the next section.

Class		Minimum	ESR	Design Criteria for Acceptable Probability of Failure					
	Failure (%)	Factor of Safety	Excavtion Support Ratio	Serviceable Life	Years	Public Access	Regulatory Position on Closure	Operating Surveillance Required	
А	50-100	<1	>5	Effectively zero	<0.5	Forbidden	Totally unacceptable	Ineffective	
В	20-50	1_0	3	Very, very short term (temporary mining purposes only; unacceptable risk of failure for temporary civil tunnel portals)	1_0	Forcibly prevented	Not acceptable	Continuous sophisticated monitoring	
С	10-20	1.2	1.6	Very, short term (quasi- temporary stope crowns; undesirable risk of failure for temporary civil works)	2-5	Actively prevented	High level of concern	Continuous monitoring with instruments	
D	5-10	1.5	1.4	Short term (semi-temporary crowns, e.g. under non- sensitive mine infrastructure)	5-10	Prevented	Moderate level of concern	Continuous simple monitoring	
E	1.5-5	1.8	1.3	Medium term (semi-permanent crowns, possibly under structures)	15-20	Discouraged	Low to moderate level of concern	Conscious superficial monitoring	
F	0.5-1.5	2	1	Long term (quasi-permanent crowns, civil portals, near- surface sewer tunnels)	50-100	Allowed	Of limited concern	Incidental superficial monitoring	
G	<0.5	>>2	0.8	Very long term (permanent crowns over civil tunnels, slopes)	>100	Free	Of no concern	No monitoring required	


2.2 STABILITY ASSESSMENT OF THE ROOF

In chimney failure, the roof or back of the void begins to deteriorate and fail into the void, chimneying upwards towards the surface. As the material fails, there is an increase in volume as the failed material takes up more space than in the intact form. Depending on the degree of bulking, the height of the void, and the amount of rock above the initial void, the material can expand completely to fill the void, eventually choking off and stopping the progress of the chimney failure. The bulking factor for more competent rocks is generally higher, as the rubble is in a more disorderly arrangement due to less breakage from falling than for weaker materials (Ofoegbu *et al*, 2008).

۱۱SD

Figure 5a. Caving Arrested by a More Competent.

"igure Sc. Formation of a Trough Subsidence of the Surface.

Figure 5b. Caving Arrested by Bulking of Roof Debris.

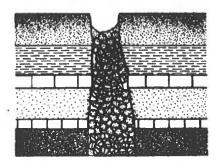


Figure 5d. Formation of a Sinkhole at the Surface.

Figure B2. Chimney caving and sinkhole formation (Karfakis, 1987)

For determining the maximum height that a cave can progress above a void, WSP uses an iterative process that incrementally progresses the cave in small increments (typically 0.3 m or 1 ft), while allowing the failed material to increase in volume by the bulking factor. Both the caved height and the void height position relative to the initial void floor are tracked with each increment, and if the caved height equals or exceeds the void height, the cave is considered choked. If the caved height doesn't equal or exceed the void height before the original rock thickness is reached, the remaining unfilled void height is used to estimate the resulting surface depression based on the collapse of the overburden into the void.

Bulking factors tend to be region-specific and dependent on a variety of factors, including rock type and strength, shape, size and arrangement of fragments, and the pressure exerted by overlying materials. Previous work performed investigating undermining in Canmore has identified that the mean bulking factor for the Canmore area between 1.4 and 1.5 (i.e., a volume increase of between 40 and 50%), with a minimum of 1.14 (i.e., a volume increase of 14%). Less than 10% of the data was found to have a bulking factor less than 1.25 (Golder, 2019). Using a minimum value of 1.15 to assess caving and sinkhole development means chimney failure is not expected to propagate to surface if the bedrock thickness above the void is 8 times the mined or void height; this has been used as a rule of thumb previously (Golder, 2019).

To determine the potential for sinkhole formation at surface, a series of assessments were conduced at varying crown pillar (i.e. bedrock) thicknesses and bulking factors. In the current example, the surface soils (overburden) were assumed to have a thickness of 14 m and a bulking factor of 1.02 (i.e., a volume increase of 2%). If a void did

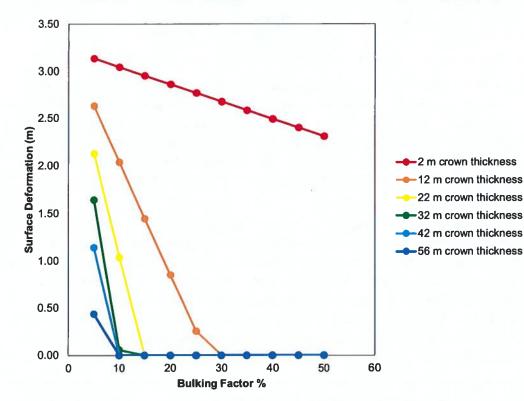
۱۱SD

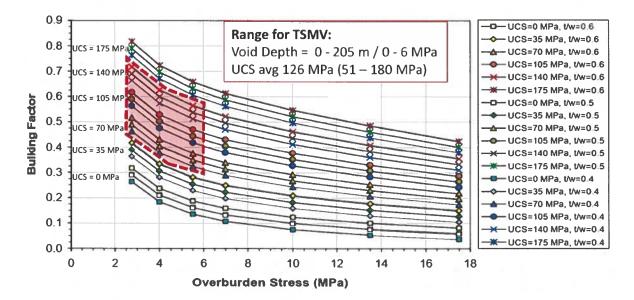
develop at surface, the final void height and hazard limit (lateral offset using a draw angle in the overburden), are calculated from the chimney edge in bedrock to ground surface). The results are shown in Table B2 for bulking factors of a.) a 10%, b.) 15%, c.) 20%, and d.) 25%. Surface deformations for various crown pillar thicknesses and bulking factors are also plotted in Figure B3.

a.)	2	% BF _{ovв} ; 1	10 % BF _{ree}	:k		b.)	2	% ВF _{оvв} ; 1	5 % BF _{rec}	k.	
Crown pillar thickness (m)	Initial Void Height (m)	Ovberburden Thickness (m)	Void Height at Surface after Caving (m)		Medium Hazard Limit (m)*	Crown pillar thickness (m)	Initial Void Height (m)	Ovberburden Thickness (m)	Void Height at Surface after Caving (m)	Final Void Height at Surface (m)	Medium Hazard Limit (m)*
2	3.5	14.0	3.0	1.5	3.2	2	3.5	14.0	3.0	1.45	3,11
12	3.5	14.0	2.0	1.0	2.0	12	3.5	14.0	1.4	0.60	1.29
22	3.5	14.0	1.0	0.3	0.5	22	3.5	14.0	Choked	-	-
32	3.5	14.0	0.1	-	-]	32	3.5	14.0	Choked	-	-
42	3.5	14.0	Choked	-	-	42	3.5	14.0	Choked	-	-
56	3.5	14.0	Choked	-	-	56	3.5	14.0	Choked	-	-

Table B2. Example Void heights and hazard limits for various crown pillar thicknesses and E	Bulking Factors (BF)
---	----------------------

c.) 2 % BF _{OVB} ; 20 % BF _{rock}						d.) 2 % BF _{OVB} ; 25 % BF _{rock}				k	
Crown pillar thickness (m)	Initial Void Height (m)	Ovberburden Thickness (m)	Void Height at Surface after Caving (m)		Medium Hazard Limit (m)*	Crown pillar thickness (m)	Initial Void Height (m)	Ovberburden Thickness (m)	Void Height at Surface after Caving (m)	Final Void Height at Surface (m)	Medium Hazard Limi (m)°
2	3.5	14	2.9	1.40	3.00	2	3.5	14	2.8	1.35	2.9
12	3.5	14	0.8	0.10	0.32	12	3.5	14	0.3	-	-
22	3.5	14	Choked	-	-	22	3.5	14	Choked	-	-
32	3.5	14	Choked			32	3.5	14	Choked	-	-
42	3.5	14	Choked		-	42	3.5	14	Choked	-	-
56	3.5	14	Choked		-	56	3.5	14	Choked	-	-




Figure B3. Surface deformation of different crown pillar thickness with respect to bulking factor and 14m of overburden.

Three Sisters Mountain Village Properties Limited c/o QuantumPlace Limited CG09140

vsp

Historically, in Canmore, undermined areas with a bedrock cover less than 8 times the thickness of the mined seam (measured from the floor of the mined seam) have been considered to have potential for sinkhole formation. The analyses above indicate that this corresponds to a bulking factor of 1.10 to 1.15.

A review of the literature and additional reports from site was conducted in 2023 as the observations from the surface expression above the workings and from the drilling programs did not support such a low bulking factor in the shallow-dipping portion of the seams. From a study looking at bulking factors for various underground openings (Ofoegbu *et al*, 2008), the bulking factor of caved rock is affected by multiple factors, including the rock strength, shape, and particle size distribution. One of the studies mentioned in the reference above looked at the influence of rock strength and shape, as well as overburden stress (load) on the bulking factor for coal mines for shale, and for weak and strong sandstones. The results from the study are shown in Figure B4.

The range of values corresponding to the study area are indicated by the red shaded area, corresponding to a UCS ranging from 51 to 180 MPa with an average of 126 MPa. The maximum depth of mine workings in the study area is about 200 m, which corresponds to an overburden pressure of 6 MPa (assuming 0.027 MPa/m of depth). According to this figure, the minimum bulking factor corresponds to 30%, with an average of around 50%.

Prior to the first development at the site in the 1990's, assessment of sinkhole subsidence features observed at the site shows that the majority were associated with bedrock cover of less than 15 m above the mine workings. From observations in drillholes at the site during early investigations, the average bulking factor was 40%, with the lowest observed value of 15%. These observations are shown in Figure B5 a.) and b.), respectively.

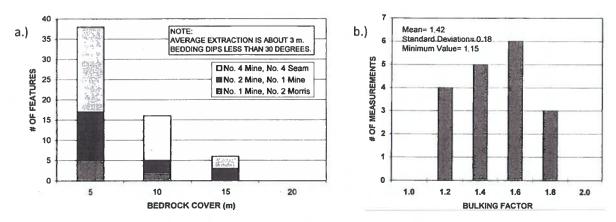


Figure B5. Observations of a.) subsidence features relative to bedrock cover, and b.) bulking factors observed in boreholes (Norwest, 1998).

While the 15% bulking factor should be retained for the more steeply dipping portions of the coal seams where the more friable coal pillars can continue to rill downslope within the seams. However, given the higher strength and competent materials of the overlying strata, for the more shallow-dipping coal seams, a slightly less conservative but more representative bulking factor of 25% is considered appropriate. This corresponds to potential surface influence where the bedrock cover is less than 5 times the mined seam thickness. Note that this only considers the bedrock, not the thickness of overburden, which remains at a 2% bulking factor.

3.0 PANEL SUBSIDENCE

3.1 BACKGROUND

Surface deformations over de-pillared coal panels are generally region or site specific, and can vary depending on multiple factors, including seam height, residual pillar size, mine (panel) width and depth, type of rock above the mine, etc.). These deformations can range between insignificant/imperceptible to severe. For deep mines, the land above can often be developed with no restrictions. However, thick seams in shallow mines can require restrictions for development of surface structures.

In general, assessment of panel subsidence makes the following assumptions:

- The overlying materials above the void remain essentially intact;
- This intact material sags onto an area of total extraction, or
- Moves downward as crushing of yielding pillars occurs.

The sagging process is assumed to begin immediately following mining, and the initial void is equal to the height of the extracted seam.

Panel subsidence generally forms a broad dish or trough shaped depression on the ground surface. While the maximum subsidence occurs in the middle of the panel, the most marked impact on the surface occurs near the edge of the trough where the strains (compressive and tensile), tilt, and curvature are highest.

vsp

3.2 PILLAR STABILITY

The first step in assessing the potential for panel subsidence is to determine the area that has been effectively depillared. Often pillars are left near slopes and levels or gangways, and the stability of these pillars must be assessed to determine if they are still providing support, or if they have failed and can be considered part of the mining panel under consideration. In considering pillar stability, the pillar loading, and pillar strength must both be analyzed to determine the factor of safety.

For pillar loading, there are two main methods for calculating loads: Tributary Area Theory (TAT), and Pressure Area Theory (PAT). TAT is generally applicable for situations where the roof is intact and the mine is large in size. PAT is more applicable for pillars near caving roofs, barrier pillars in room and pillar mines, strip pillars, and longwall pillars. As most of the pillars under consideration in Canmore undermining are barrier pillars in room and pillar mines, PAT is used. The relation to calculate the load is as follows (Yu et al, 2018):

$$P = \frac{P_T - P_C}{\omega_p L_p^a} = \gamma H \frac{(\omega_P - \omega_c) (L_p + \omega_c)^a}{\omega_P L_p^a} - b\gamma \left[\frac{\omega_c^2 (\omega_P + L_P)^a}{4\omega_P L_P^a \tan \beta} - \left(\frac{\omega_c^3}{24\omega_P L_P \tan \beta} \right)^a \right]$$

Where:

Р	=	average pillar stress (MPa)
ωΡ	=	pillar width (m)
LP	=	pillar length (m)
ωC	=	mining width (m), capped at 10 m, reflecting the maximum credible long-term roof span in current conditions
γ	=	unit weight of overburden (N/m3)
н	=	mining depth (m)
β	=	abutment angle (°), assumed to be 21°
a and b	=	Cooefficients, for small rectangular pillars, a and b are both 1

Pillar strength is a function of both pillar volume and shape. A number of equations exist for assessing the strength of coal pillars. These are usually derived empirically and are most applicable to the region for which they were developed. A comparative study of empirical methods to estimate coal pillar strength and factor of safety was conducted by Verma (2014) looking at pillar failures from two different regions in India. From this analysis, it was determined that Salamon & Munro (1967) predicted failed cases correctly, and that Bieniawski (1975) and Mark-Bieniawski (1997) gave the highest predicted factor of safety. Based on this assessment, these relations were selected for assessing the strength of relict pillars for the current study; the formulation for Salamon & Wagner (1985) was included to maintain continuity with the previous studies and for comparison.

Multiple methods were used to give a range for the potential pillar strength and related Factor of Safety (FoS) for comparative purposes. The relations used are summarized in Table B3.

Table B3: Empirical Pillar Strength Formulae

Method	Formula	Constants	Comments
Salamon & Munro (1967)	$C_P = k_{SM} h_P^{\alpha} w_P^{\beta}$	k_{SM} = strength of 30 cm coal cube (MPa) h_P , w_P =Pillar height, width α , β = constants	Developed for S. African room and pillar mines; K to be evaluated by testing a specimen size of 30 cm
Bieniawski (1975)	$C_P = k_B \left[0.64 + 0.34 \left(\frac{w_P}{h_P} \right) \right]$	k _B = compressive strength of 30 cm coal cube (MPa) h _P , w _P =Pillar height, width	Specimen should be 30 cm cube pillar
Salamon & Wagner 1985	$C_{P} = KV^{a}R_{0}^{b}\left\{\frac{b}{\varepsilon}\left[\left(\frac{R}{R_{0}}\right)^{\varepsilon} - 1\right] + 1\right\}$	R_0 =4 (squat pillars) ε = strength increase when $R > R_0$	ε taken as 2.5
Mark & Bieniawski 1985	$C_P = S_I \left[0.64 + \left(0.54 \left(\frac{w_P}{h_P} \right) - 0.18 \left(\frac{w_P^2}{h_P L_P} \right) \right) \right]$	S _I = in-situ coal strength; L _P = pillar length	

It should be noted that in most cases, the strength of the coal is to be based on the strength of a sample block size of 30 cm. The purpose for this specification is that there is a scale effect associated with intact strength versus the size of sample, where smaller samples are considered to have a lower number of imperfections or fractures and, consequently, are stronger. However, for the Canmore situation, it has been reported that 70% of the coal recovered across the mines was 6 mm or smaller in size (Norwest, 2000). Due to the friable nature of the coal, there is no associated decrease in strength with increasing sample size.

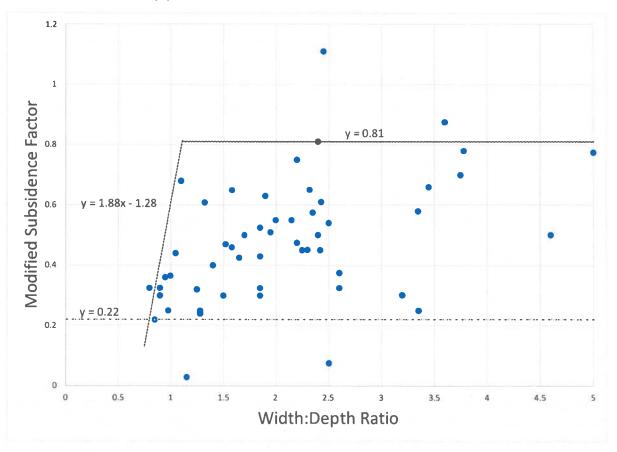
Earlier analyses assumed an unconfined strength for the coal of 5 MPa (Golder, 2006); this value is considered reasonable and conservative, and this has been adopted for the analyses described herein. In all cases, pillars with a Factor of Safety less than 1.5 were considered failed. This assumption is also considered conservative.

The risk of pillar punching into the floor or roof material is not considered, as the coal is a weaker unit than the surrounding rock, The lowest unconfined compressive strength measured the rock mass during recent testing is 18 MPa, with an average value of 58 MPa and a maximum of 106 MPa.

3.3 DETERMINATION OF MAXIMUM SUBSIDENCE, SMAX

The National Coal Board (NCB) of the United Kingdom published the 2nd edition of the Subsidence Engineers' Handbook in 1975, which related observed subsidence to the width and depth of longwall workings in the UK (NCB, 1975). However, application of the NCB parameters to other locations and geologic environments has been found to be less reliable due to the differing geological conditions at each mining location (Abel and Lee, 1983). Nevertheless, this work influenced others working on subsidence related research.

The Marino method was used to correlate observed subsidence with the width and depth of the underlying mined seams for room and pillar mines in Illinois (Marino, 1998). The data from Marino is plotted on Figure B6, which


shows a significant spread in the data for each width: depth ratio, Marino defined upper and lower limits for the potential subsidence based on the shape of the data set as shown on Figure B6, with the following limits:

W:D < 0.8	SF' = 0.22
0.8 < W:D < 1.11	SF' = 1.88* W:D -1.28
1.11 < W:D	SF' = 0.81

Where Smax = SF'*H*e

H = initial mining height (m)

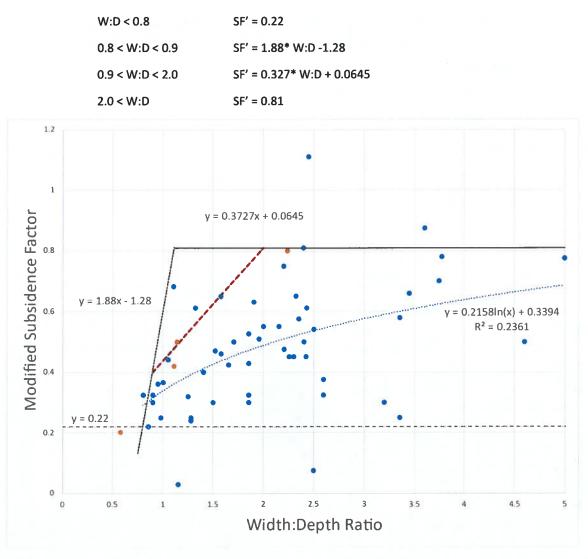

e = extraction ratio (%)

Figure B6. Modified Subsidence Factor, SF' (after Marino, 1988)

This method and was adopted by both Norwest and Golder for use in Canmore. Golder used the raw data and guidelines from Marino; however, Norwest applied the guidelines to additional data from measured subsidence over room and pillar mines in Pennsylvania. Based on this additional data, Norwest found a good fit below a width to depth ratio (W:D) of 0.9 and above a W:D ratio of 2.0 but modified the upper bound curve in between this range (Norwest, 2000). WSP applied a best-fit curve to the data from the Pennsylvania sites within the ranges identified above. This modified curve is presented in Figure B7 and was used in the present analysis. The distribution is as follows:

vsp

Figure B7. Norwest Modified Subsidence Factor, SF'

A log-normal best fit curve has also been applied to the data, as shown by the dashed line and underlying equation on the right side of Figure B5. This curve corresponds to a confidence interval of approximately 50%. A review of the data distribution shows that the upper limits on the curve correspond to a confidence interval of approximately 95%, so these upper bounds were used for determination of the subsidence factor in the analysis conducted.

3.4 ASSESSMENT OF MINING HEIGHT

Assessments of mined height or initial void for the empirical analyses often assumes that the void to be analyzed is the mined height of the coal seam. This value gives a starting point or an upper bound, but it does not necessarily reflect the failure mechanisms that are occurring in the rock mass above the mined-out seam. From observations made underground in the Wilson Seam during mining, it was reported that following de-pillaring, the immediate roof would fail into the void with a bulking factor of 1.30 to 1.35. The upward migration of the caving was halted

by a stronger unit located approximately 8 m above the original roof position. Norwest estimated the height of the residual void at between 0.8 and 1.2 m based on the bulking factor and used these values for the mined height (Norwest, 2000). The void height at the time of reporting was confirmed by drilling to the base of the original coal seam depth.

The validity of this approach was confirmed by Cullen et al (1995), who reported that the maximum subsidence observed above a shallow mining horizon can be reduced by caving of the roof strata prior to the occurrence of general collapse.

Golder (2019) followed a similar approach, but their analysis considered a multi-stage failure process and accounted for compression of the caved materials due to the ultimate settlement of the overlying arched materials. The stages of failure are as follows:

- Initial collapse of the immediate roof into the mined void. This collapse is truncated at approximately 5 to 8 times the initial void height depending on the assumed bulking factors (25 to 15% bulking factors, respectively). This failed material is loose to unconsolidated and was free to rotate during failure into the void.
- Secondary collapse occurs above this initial failure, incorporating some of the overlying beds. These
 beds separate from the overlying beds and sag onto the initial rubble pile, compressing the rubble to
 some degree. However, this material is generally blockier and more constrained than the original
 rubble pile and is consequently less compressible. For simplicity, this bed separation is considered
 continuous across the panel, although it is more likely that this void thins towards the ends of the
 panel, and there may be multiple narrower arches formed over the panel due to the presence of rib
 and barrier pillars in the panel, or incomplete yielding of some of the stump pillars left within the depillared areas, or a combination thereof.
- Finally, any remaining arches fail, and the remaining rock settles down onto the already-failed materials, compressing the failed materials based on the weight of the rock in the final failure. Infilling of the remaining voids combined with compression of failed materials is then transmitted to surface, where subsidence is observed.

The failure process is shown schematically in Figure B8.

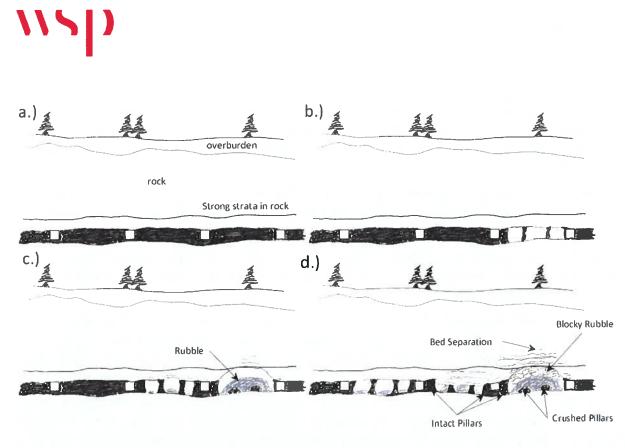


Figure B8. Schematic showing extraction process and ground response. a.) initial room development; b.) depillaring process on right hand side; c.) material caves up to strong strata; d.) blocky rubble fails onto caved rubble, bed separation begins

The approach used by Golder (2009, 2019) to determine Smax as described above is considered reasonable and is adopted for this project with slight modification for the determination of the subsidence factor as noted in Section 3.3.

Based on this approach, the determination of Smax is given as follows:

$$S_{max} = F_s * H_v + H_{r1} \frac{S_r}{Y_{r1}} + H_{r2} \frac{S_r}{Y_{r2}}$$

Where:

 $F_s = \frac{SF', \text{ The subsidence factor from the modified Marino chart in Figure B5, and which considers the potential for overlying material to settle into the remaining void, Hv$ Hv = The height of the remaining voids, including bed separation and remaining void at the

- mine level (m).
- H_{r1} = The height of caved rubble (maximum 8 x the thickness of the original void) (m)
- Y_{ri} = Deformation modulus for the caved rubble (200 MPa assumed) (Golder 2006)
- H_{r2} = The height of block failure or sagged material overlying the caved rubble (m)
- $Y_{r2} =$ Deformation modulus for the block failure / sagged rubble (m) (500 MPa assumed) (Golder 2006)
- $S_r = \frac{\text{The stress applied to the top of the rubble piles due to the collapse of the remaining intact rock above the sagged beds (MPa).}$

The thicknesses of void, caved rubble and sagged / block failure rubble are determined by drilling, targeting depillared areas of the seam based on the mine plans. It should be noted that the interpretation of drilling data can

be difficult for multiple reasons. In identifying the various types of debris or the presence of voids, the use of a borehole camera is recommended as it can help prevent misinterpretation based on drill returns, cuttings, or the response of the drill string. Note that if no drill data is available, the Smax can be estimated using upper bound identified in the modified Marino method in Figure B7 to determine the value of SF' and multiplying that value by the original mined height and the extraction ratio (as a decimal fraction).

The presence of pillars and support in de-pillared zones can delay or halt the failure in de-pillared zones. To illustrate this point, Figure B9 shows some observations of closure in a Pennsylvania longwall coal mine. Photo a.) shows cribbing and rockbolts used to support the roof, with material failing around the bolts but support still being provided by the cribbing. Photo b.) shows bulking and caving around props. Photo c.) shows props supporting a panel next to a rib or barrier pillar. Photo d.) shows props retaining the roof, but caved material on the floor and bagging in the screen attached to the roof (note screen was not used in Canmore, to WSP's knowledge). Drilling into any one of these scenarios in a de-pillared panel would indicate a much greater initial void than is present where supports have decayed/failed, and pillars have yielded. The latter scenario is considered more representative for future surface settlement determinations as the remaining support may create multiple smaller panels rather than a single large panel.

Figure B9. Examples of underground closure in a Pennsylvania longwall coal mine

The height of void encountered in a de-pillared area can vary depending on what part of the depillared seam the drill hits. As an example to illustrate, in Figure B10 the drillhole with the void height of 0.6 m which also encounters

vsp

caved material and blocky debris, can be considered most representative of the ground response and subsidence potential for the area. The other boreholes either encounter still-supported workings, or voids adjacent to intact pillars, or intact barrier pillars, which are less useful for the determination of the ground response to subsidence.

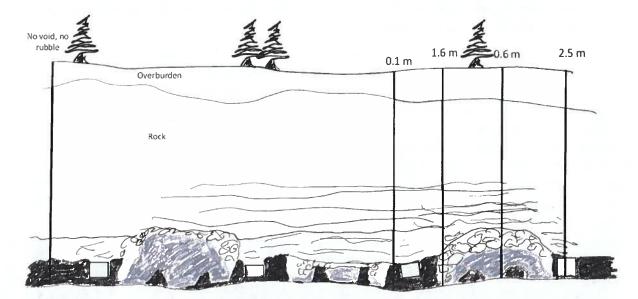


Figure B10. Schematic showing potential void heights based on drillhole locations

3.5 SHAPE OF THE SUBSIDENCE TROUGH

Once the maximum magnitude of subsidence is determined, it is important to determine the shape of the subsidence trough on the ground surface. Subsidence related damage is not generally related to the vertical and horizontal displacements encountered; rather, the damage is related to the slope, strain and curvature related to the ground subsidence (Peng et al., 1994). These values are highest near the margins of the de-pillared areas.

For irregular or complex mine geometries, influence functions have been found to be most suitable for subsidence predictions over underground workings (Hartman, 1992). Subsidence profiles were developed using the Budryk-Knothe influence function (Knothe, 1957) as provided in Hartman (1992). Use of this influence function permits determination of the distance relative to the edge of the seam at which the strain, tilt and curvature values using the following relations:

For surface profile:

For horizontal strain:

$$S'(x) = \frac{S_{max}}{R} * e^{-\pi \frac{x^2}{R^2}}$$
$$E(x) = \frac{-2\pi x}{Rh} * S_{max} * e^{-\pi \frac{x^2}{R^2}}$$
$$G(x) = \frac{S_{max}}{R} * e^{-\pi \frac{x^2}{R^2}}$$
$$k(x) = \frac{-2\pi x}{R^3} * S_{max} * e^{-\pi \frac{x^2}{R^2}}$$

For Curvature:

For Tilt:

Three Sisters Mountain Village Properties Limited c/o QuantumPlace Limited CG09140

WSP E&I Canada Limited Page 15

vsp

Where:

- S_{max} = The maximum subsidence (m)
 - R = Radius of influence (m)
 - x = The horizontal distance from the inflection point on the subsidence curve (m)
 - h = The depth from the surface to the top of mined void.

The surface profile forms an elongated S-shape with the lower end trending toward the bottom of the subsidence trough, and the upper end trending towards the original ground surface. The inflection point is the point along this curve where the strains change from tensional at the top to compressional at the bottom of the curve. From Peng et al (1994), the inflection point generally locates inside the trough, and is offset from the edge of the mined panel by distance d, given by:

$$d(h) = h(0.305069 * 0.999104^{3.28h})$$

where: the value for R (radius of influence) is given by h/3, corresponding to an angle of influence of 71.56° (Peng et al, 1994).

Using these values, it is possible to estimate the distance from the edge of the mined panel to the point at which strain, tilt, or curvature values exceed the critical limits for the structure under consideration. To locate structures outside of the critical limits, an offset of 5 m is applied to the calculated location to account for any discrepancy in the location of the mining limits used in the analysis.

3.6 DEFORMATION LIMITS FOR DEVELOPMENT

In determining the deformation limits for development, WSP reviewed the substantial body of work that has been performed for development over the undermined areas of the Three Sisters site. To this end, the following limits have been determined based on the work by Golder (2006):

Table B4: Design Limits for Structures

Deformation Type ¹	Upper bound Value		
Strain (compression and extension)	1 mm / m		
Tilt	5 mm / m (0.5%)		
Curvature	0.2 / km		

Notes:

1. Applies to timber frame and brick/block low rise structures.

Critical guidelines for other infrastructure vary depending on the type of infrastructure. The values described herein have been used historically for the Canmore area (Golder, 2005). The infrastructure limits are as follows:

Strain:

- For roads, cracking can occur at strains of 10 mm/m. Pavement also has about a 10-year life so a probabilistic assessment is recommended.
- For gravity and pressure pipes, material can be selected based on the expected strain, which is provided to the designers.

Slope:

- For gravity pipes: a change in slope of less than 2% (i.e, 20 mm/m) will have little impact over short distances.
- For pressure pipes, tilt should have no impact.

Curvature:

For pipelines, the maximum allowable curvature from the literature is 1000 x the pipe diameter (DN) (Peng, 1992). For gravity pipes 200 to 450 mm diameter, the allowable curvature ranges from 46 to 76 m (230 x DN and 170 x DN respectively); for 210 mm diameter pressure pipes, the curvature can be up to 116 m (550 x DN). These values correspond to a deflection of up to 1.5° and 3° for pressure and gravity pipes, respectively.

3.7 UNCERTAINTY

In determining the potential for surface deformations at the area of study due to undermining, any assumptions made regarding material properties, loading and deformation have been conservative in nature. In addition, there are many areas of uncertainty related to estimating the current conditions. These can be described as follows:

- No surface subsidence measurements: while there have been many recorded incidents of sinkhole development where underground workings were near to the subcrop, there are no recorded measurements of surface deformation at site, including changes in surface structures or infrastructure. Anecdotally, references are made regarding limited surface deformations, including:
- the narrow-gauge railroad that crossed the site, including over multiple de-pillared mine seams, did not experience any settlement-related issues,
- there were no recorded issues with leaning or movement of power poles installed across the site or impacts to the power lines, and
- there were no observations of tilting trees associated with high strain above the edge of seams.
- Models used for estimating the subsidence factor: the models of Marino (1998) and Peng (1994) are based on observations made in Illinois and Pennsylvania, respectively, and display a wide range of observations with no discussion of uncertainties. To compensate, conservative upper limit bounds were used in the estimations herein.
- Geological uncertainty: each geologic regime has its own unique signature for ground behaviour. The
 National Coal Board (NCB) estimates were not used for Canmore due to significant differences in
 ground conditions. The North American experiences from Peng and Marino were used with
 modification for Canmore as they were less conservative than the NCB example; however,
 differences still exist. Canmore mines consist of friable mountain coal that is weaker than the
 surrounding rock mass. Geologically, the strata in Pennsylvania is closer to that in Canmore, but the
 coal is stronger than the immediate surrounding strata (the opposite of the Canmore experience).
 This allows the pillars to potentially punch into the beds above and below the seam, whereas in
 Canmore, they will yield due to the loading. The strata in Illinois is much softer, and consequently the
 deformations would be higher than the Canmore experience.
- Incomplete mine plans: while the record keeping for the Canmore mines was exemplary in most cases, there are still cases where the mine plans may be incomplete or inexact, due to

- Damage or distortion associated with aging and storage of the plans
- Incomplete survey pickup of mined areas, particularly at the outer limits of the mine areas, and at late stages of the extraction.
- Issues with interpretation of the drillhole data: interpretation of the drilling data requires an
 understanding or estimation of the portion or layout of the workings encountered by each drillhole.
 In some cases the age of the boreholes may not reflect the current conditions, and so interpretation
 must be made with caution. Borehole interpretation has been enhanced by the use of down-hole
 camera surveys, which can be more accurate in assessing the presence and location of voids,
 fractures, rubble, and caved debris. In addition, some holes from earlier programs are still accessible,
 and re-surveying with the borehole camera can help to update conditions in the rock mass above the
 hole. Comparison with the historic logs can also give an estimate for rate-of-change for migration of
 fractures towards surface.

In handling the uncertainties described above, care has been taken to err on the side of caution while trying to avoid compounding of conservatism from multiple assumptions. It is anticipated that as more work is done across the sites, including additional drilling campaigns, the understanding of the unique conditions in Canmore will improve, which will correspondingly improve the understanding of the potential surface impacts.

vsp

4.0 **REFERENCES**

Carter, T.G. and Miller, R.I., 1995. Crown Pillar Risk Assessment – Cost Effective Measures for Mine Closure Remediation Planning. Trans. Inst. Min. Metl, Vol 104, pp A41-A57.

Carter, T.G., 2000. An Update on the Scaled Span Concept for Dimensioning Surface Crown Pillars for New or Abandoned Mine Workings. Proc. 4th North American Rock Mech. Conf., Seattle, pp.465-472

Carter, T. G., 2014. Guidelines for use of the Scaled Span Method for Surface Crown Pillar Stability Assessment. 1st International Conference on Applied Empirical Design Methods in Mining - an ISRM Specialized Conference, Lima, Peru. June 9 – 11, 2014

Cullen, M, Pakalnis, R C, and Payne, D., 1996. Predicting gob cave by rock movement at the Quinsam Coal Mine, in Proceedings of the North American rock mechanics symposium: tools and techniques in rock mechanics, Montreal (Canada), 19-21 Jun 1996, Volume 1; Aubertin, M.; Hassani, F.; Mitri, H. [eds.] 1996 pp.

Golder Associates Limited., 2006. Three Sisters Mountain Village Stewart Creek Phase 1, Block 14, Lot 1ER, Lot 2 MR, Lot 3 MR; Block 15, Lot 1 MR, Lot 2PUL, Lot 7 MR, Lot 9MR; Roads and Utilities – Undermining Report – Final Report, prepared for Three Sisters Mountain Village Ltd, 03-1321-013-2660, November.

Golder Associates Ltd., 2005. Three Sisters Mountain Village Site 2A, Phase 2 Roads and Utilities Undermining Report, prepared for Three Sisters Mountain Village Ltd, Ref. 03-1321-013-2093, March.

Golder Associates Limited, 2019. Three sisters Mountain Village, Undermining Report, South Bow Water Main, Tipple Site, report prepared for EPCOR Water Services Inc., Ref. No. 18104795-002-R-Rev0-6000, October.

Hartman, H.L., 1992. Mining Engineering Handbook, 2nd Edition, Seeley W. Mudd Memorial Fund of AIME Society for Mining, Metallurgy and exploration.

Karfakas, M.G., 1987. Mechanism of chimney subsidence over abandoned coal mines, Proceedings of the 6th International Conference on Ground Control in Mining, 9 – 11 June, Morgantown, WV, P. 195-203.

Knothe, S., 1957. Observations of Surface Movements Under Influence of Mining and Their Theroetical Interpretation, Proceedings European Congress on Ground movement, University of Leeds, Leeds, UK, Apr., pp. 210-218.

Lee, F.T. and Abel, J.F. Jr., 1983. Subsidence from Underground Mining: Environmental Analysis and Planning Considerations. U.S. Geological Survey Circular 876, 28 pp.

Mathey, M., and J.N. van der Merwe, 2016. Critique of the South African squat coal pillar strength formula, The Journal of the Southern African Institute of Mining and Metallurgy, Volume 116, March.

Pappas, D.M., and C. Mark. "Behaviour of Simulated Gob Material." Report of Investigations RI 9458. 1993.

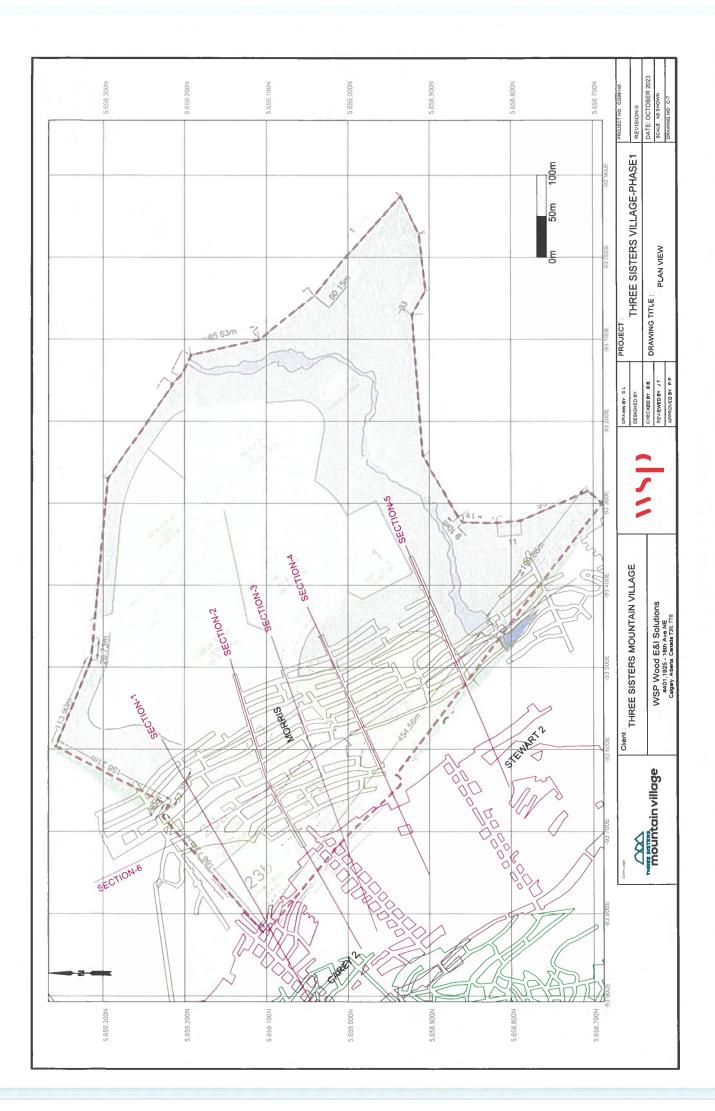
National Coal Board, 1975. Subsidence Engineers' Handbook. 2nd rev. ed. National Coal Board Mining Department.

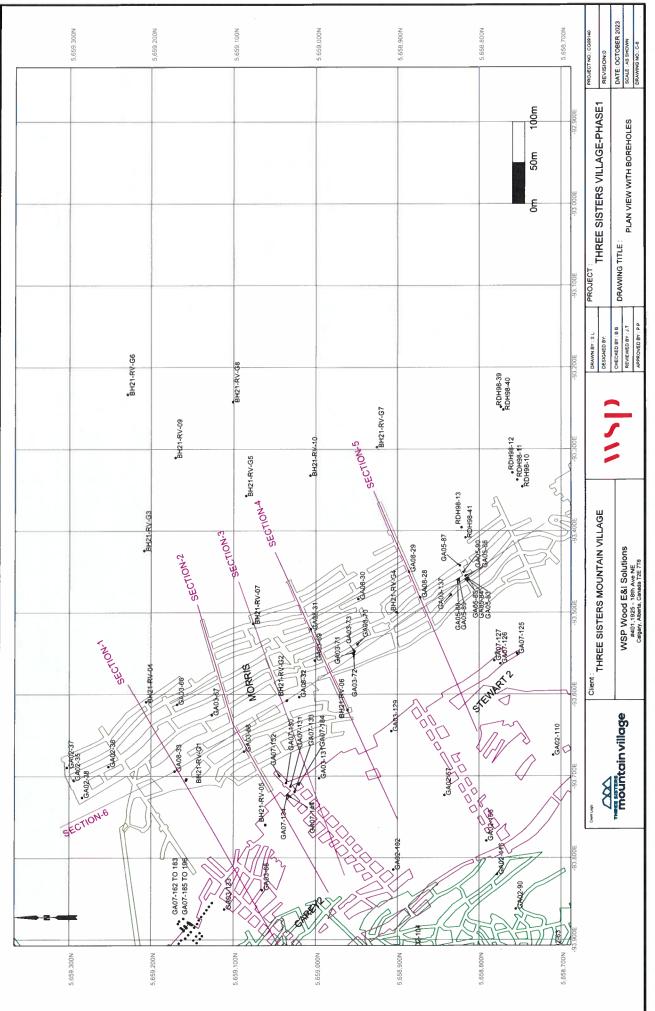
Norwest Resource Consultants Ltd., 2000. Clubhouse Hill Undermining Report, prepared for Three Sisters Resorts, Inc., dated May 25.

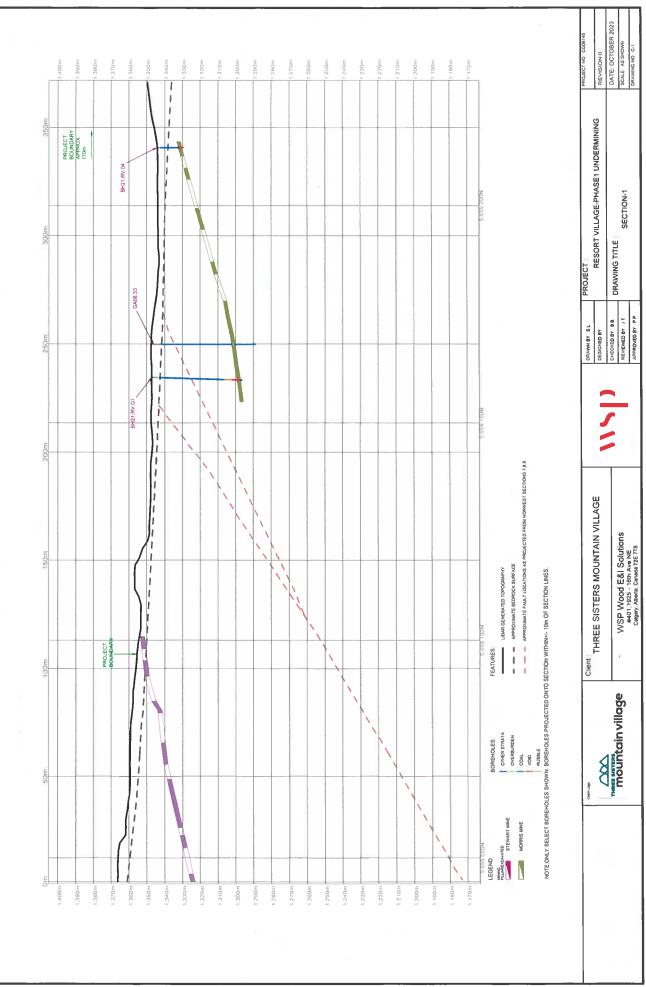
Ofoegbu, G.I, R.S Read, and F. Ferrante, 2008. Bulking Factor of Rock for Underground Openings (Draft), report prepared for U.s Nuclear Regulatory Commission, Contract NRC 02-07-006, February.

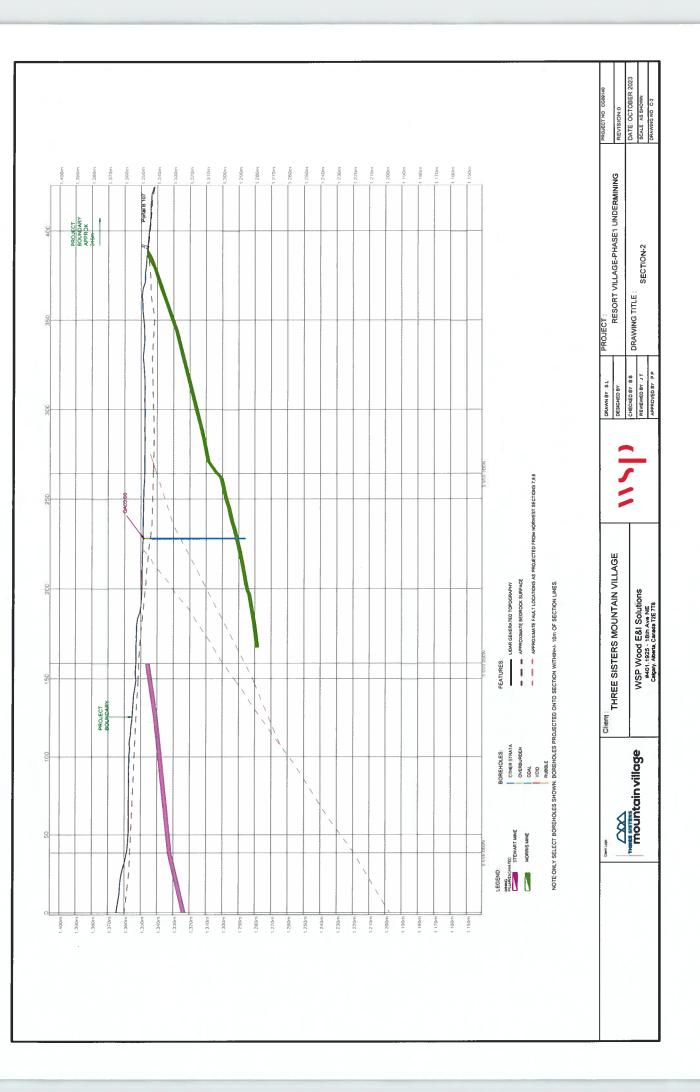
Peng, S.S., C.T. Holland, and Y. Luo., 1994. A new method for designing support area to protect surface structures over underground coal mining areas, SME Transactions, Vol 294, pp. 1927 – 1932.

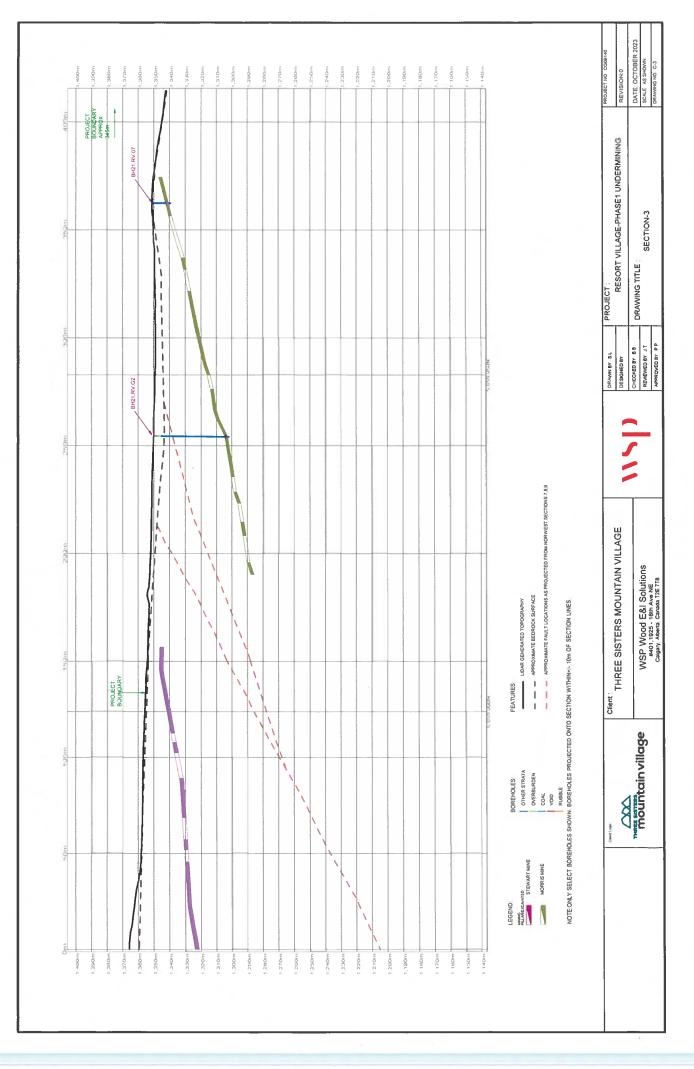
Salamon MDG, Munro. A.H. 1967. A study of the strength of coal pillars. J. South Afr. Inst. Min. Metallurgy; 68:55-67.


Salamon, M.D.G, and H. Wagner, 1985. Practical experiences in the design of coal pillars. Safety in Mines Research, Proc. Of the 21st International Conference on Rock Mechanics, Sydney, 21-25 October 1985, pp. 3-9.


Verma, A.K., 2014. A Comparative Study of Various Empirical Methods to Estimate the Factor of Safety of Coal Pillars, American Journal of Mining and Metallurgy, Vo 2, No.1, pp. 17-22, June.


Yu, Y, S-E Chen, K-Z Deng, P. Wang, and H-D Fan, 2018. Subsidence Mechanism and Stability Assessment Methods for Partial Extraction Mines for Sustainable Development of Mining Cities – A Review. Sustainability 2018, 10, 113.


Appendix C

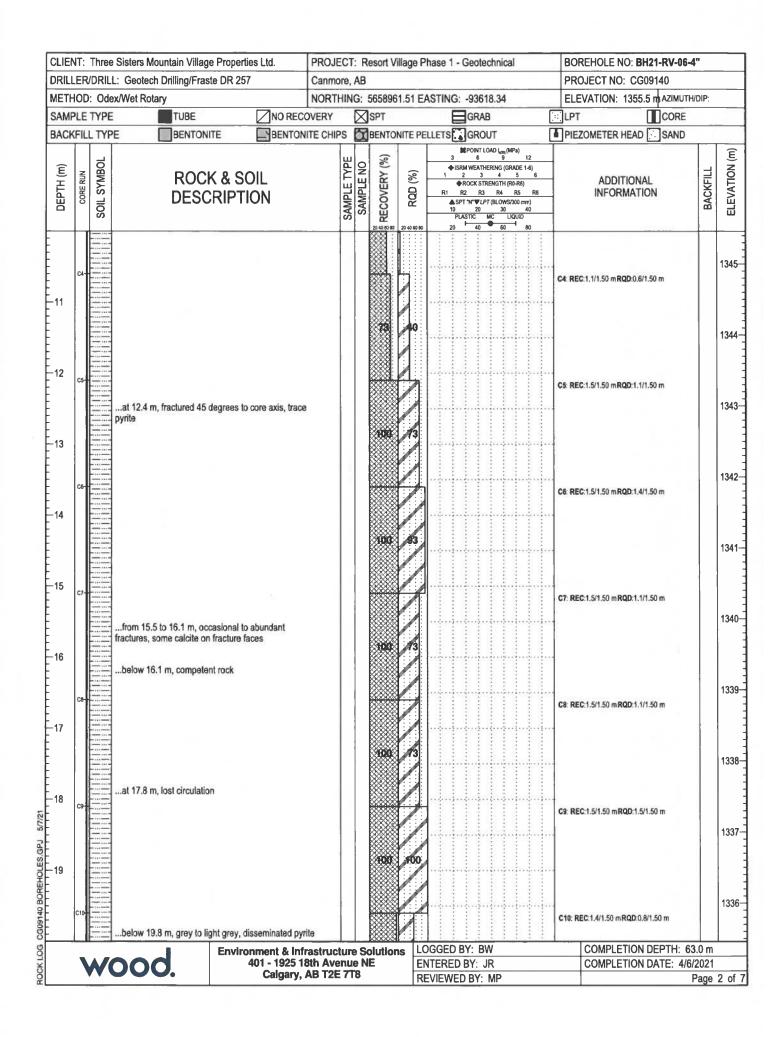

3D Model Plans and Sections

REVISION 0 DATE: OCTOBER 2023 SCALE AS SHOWN DRAWING NO C-4 PROJECT NO CO00140 RESORT VILLAGE-PHASE1 UNDERMINING 180m 17.0m 160m 115011 1-40111 390m 350m 430m 320m 1 310m 300m 290m 280m 270m 260m 230m 220m 210m 20011 190m 130m 120m 100011 380m 370m 360m 340m 250m 240n1 PROJECT BOUNDARY APPROX 338m SECTION-4 Portal UMA9 DRAWING TITLE PROJECT DRAWN BY S.L. DESIGNED BY CHECKED BY B REVIEWED BY J T APPROVED BY P GA08.31 N, ł ١ 250 - APPROXMATE FAULT LOCATIONS AS PROJECTED FROM NORWEST SECTIONS 7.8.9 | | | 1 THREE SISTERS MOUNTAIN VILLAGE 200 T BH21.RV.06 1 WSP Wood E&I Solutions #401.1925 - 18th Ave NE Calgary, Alberta, Canada T2E 778 APPROXIMATE BEDROCK SURFACE LEGEND BOREHOLES. FEATURES. MURRENNE MURRENNE MORRENNE MORRENN 1 H 50 PROJECT BOUNDARY Client : mere samual mountain village 100 1 . \ LEGEND: MARGE FLLARTE STEWART MARE MORPHS MARE Chere Lapo 1 200m 1 220m 1 210m 1 200m 180m 1 170m 1 160m 1 140m 1 120m 1 320m 1 250m 1 240m 1 230m 1 190er 1 150rt 1 130/1 1 370r 1 360r 1 350r 34Dr 1 330r 1 3100 1 3001 1 290n) 26Dr 1 270n 400, 390 380

REVISION:0 DATE_OCTOBER 2023 SCALE AS SHOWN DRAWIND NO C-5 PROJECT NO CG09140 180m 210m 0051 40m 130m niogi 360m 3701m 340m 32000 3 (Dm 3000 250m 240m 220m 200m 1.001 170m 11001 1,20m 10m moge 330m SOm 280m 270111 260m 2:30m 000 RESORT VILLAGE-PHASE1 UNDERMINING 1 Portal 899 PROJECT BOUNDARY APPROX 326m ٨ Ν SECTION-5 ٨ ١ ١ DRAWING TITLE PROJECT 1 ١ DRAWN BY S.L. DESIGNED BY CHECKED BY B B REVIEWED BY JT APPROVED BY JT ١ ٨ J ١ 1 1 1 h - APPROXIMATE FAULT LOCATIONS AS PROJECTED FROM MORMEST SECTIONS 7,8,9 ١ ١ ١ ١ THREE SISTERS MOUNTAIN VILLAGE - APPROXIMATE BEDROCK SURFACE 1 LEGEND BOREHOLES FEATURES: MARIA LAWITE MORENTIME OFFICIENT A OFFI BOUNDARY T 1 WSP Wood E&I Solutions #401,1925 - 18th Ave NE Cagary, Alberta, Canada 12E 778 ١ N ١ h. ١ 1 ١ ١ ł 1 ٨ 1 T, ١ ٨ Client ; ١ ٨ i. LEGEND MARCENATID STEVART MINE MORRIS MINE ٧ 1 ١ Clark Logs ١ ١ ١ .1. 1 340m m076.1 1.300m 1.240m m062.1 1.210m 180m 170m 1,110m 1,100m .380m 350m ,320m ,300m .290m 280m 220m 2005 10001 n.001. , 130m TI0055. 1,330m 260m .1400 1,1204 080 10001

Appendix D

WSP Borehole Logs and Point Load Test Data


CLIENT:	Three	e Sisters Mountain Villag	e Properties Ltd.	PROJ	ECT	: Re	sort Villa	ge Phas	e 1 - Geo	otechnical		BOREHOLE NO: BH21-RV-04-	4"	
DRILLER	R/DRIL	L: Geotech Drilling/Fras	te DR 257	Canm	ore,	AB						PROJECT NO: CG09140		
		ex/Air Rotary						B7 EAST	ING: -93			ELEVATION: 1344.4 m		
SAMPLE				COVERY										
DEPTH (m) CORE RUN	Ы			ONITE CHI	SAMPLE TYPE			●S 10 2 00 2 00 2 1 N*▼LPT N 10 2 PLASTIC	10 30 MC	Pa) 80 0 400 0 400 0 400 0 (BLOWS/300 40 LIQUID	mm)	ADDITIONAL INFORMATION	BACKFILL	ELEVATION (m)
-1		TOPSOIL and ORGANIC boundant rootlets, frozen SAND (SM), fine grained, grey to brown, abundant i below 0.3 m, very soft o below 1.2 m, trace fine brown, saturated SILTSTONE dark grey, w to 20mm	silty, gravely, trace clay rootlets, trace oxidation, Irilling with odex grained gravel, subroun	ded,		D1		0	0 60	80		D1: Blow Count 7/50/6 NC:50% D2: Blow Count 4/4/5 NC:12% S1: MC:12% Sravel 22% Sand:47% Fines:31%		1344- 1343-
-3		at 3.8 m, encountered v not advancing, upon rer of significant wear, mov	noval casing shoe show	ed signs		G2	•					03: Blow Count 50 for 25mm Switched to Air Rolary at 2.7 m 32: MC: 17%		1341-
5		616644E to switch to ai to 2.7 m	r rotary drilling, surface	casing set										1340 1339
-6														1338
-8														1337-
-9														1336
						,		TLOCO	ED BY:			COMPLETION DEPTH: 1		1335
		ood.	Environment & Ir 401 - 1925	18th Ave	enue	e NE	utions		RED BY:			COMPLETION DEPTH: 13		
			Calgary	, AB T2E	7 T	8			WED BY				Page	

CLIE	NT:	Three	e Sisters Mountain Villag	e Properties Ltd.	PROJE	CT	Res	sort Villag	je Phase	e 1 - Ge	eotechni	cal	BC	REHOLE NO: BH	21-RV-04-4"	1	
DRIL	LER	/DRIL	L: Geotech Drilling/Fras	ite DR 257	Canmor	re, <i>i</i>	AB						PR	OJECT NO: CG0	9140		
			ex/Air Rotary		1			659205.8	7 EASTI					EVATION: 1344.4			
SAM	_						S						LP		CORE		
BACK (m) HEPTH	CORE RUN	Ы		ITE BENTON		SAMPLE TYPE		10	● S.,	SCPT V, (m CPT q, (BA) CPT q, (BA) CPT SPT ((kPa) 60 98) 900 83) 900 900 900 900 900 900 900 900 900 90	80 :00 :00 :00 mm) 40 :80		ADDITIONA		BACKFILL	ELEVATION (m)
-11			at 11.4 m, strong sulph	ur odour	12.2m								Could hear on and off i approximat	water trickling. Water let nost of the hole, water di e	vel probe beeped		1334- 133 3 -
13													•				1332-
- 14					15.0m												1330-
-15			surface to 2.9 m A square steel casing pro		l m s from												1329
-17			around the PVC stick-up														1328-
																	1327-
																	1326-
19 																	1325
				Environment & Inf					LOGG				·	COMPLETION			
		W	ood.	401 - 1925 1 Calgary,					ENTER					COMPLETION			1 2 of 2
L							~		IKEVIE	VVEU L	BY: MP			L	P	aye	2 OT

CLIEN	T:	Three	e Sisters Mountain Villag	e Properties	Ltd.	PROJ	ECT	: R	esort V	illage I	Phase	1 - Ge	eotech	nical		BO	REHOLE NO: BH21-RV-0	5-4"	
—			L: Geotech Drilling/Fras	ste DR 257		Canmo	_										OJECT NO: CG09140		
			ex/Wet Rotary					_	565906	2.19 E	ASTI	_		.11			EVATION: 1355.1 m AZIMU		
SAMP								_	SPT				RAB	-		LP			
BACK	FIL		E BENTON	iie į	BENTONI	IE CHI	-s T		BENTO	NITE PI	T						ZOMETER HEAD SAND		2
DEPTH (m)	CORE RUN	SOIL SYMBOL		K & SOI CRIPTIC			SAMPLE TYPE	SAMPLE NO	RECOVERY (%)	RQD (%)	1	♦ ISRM ¥ 2 ♦ ROO 1 R2 ▲ SPT "N 10 PLAST	3 CK STREN R3 T♥LPT (BI 20 IC MC	NG (GRADE 4 5 GTH (R0-R6 R4 R5 LOWS/300 30 LIQUIZ	6 (R6 (R7) 40		ADDITIONAL INFORMATION	BACKFILL	ELEVATION (m)
	C1		TOPSOIL and ORGANIC Pbundant rootlets, forest SAND and GRAVEL (SW compact, grey, wet below 0.5 m, some silts weathered SILTSTONE, grey, highly 10mm, dry from 3.6 to 3.65 m, high infill below 3.65 m, occasion at 4.4 m, COAL bed, bla below 4.9 m, fracture pa at 6.5 m, fracture at 45 fracture surface	debris, wet fine to coars itone fragmen weathered, fr hly fractured w al fractures al ack, possible of arallel to core to core axis, c	se grained, ts, highly agments up to vith soft fracture t 45 to core axi core loss axis ealcite on	e	X	G1 02 G2	8000 91	200000 333 500 500 500 500 500 500 500 50						MC:40 G1: MC D2: Bk MC:5% G2: MC C1: RE Set Ca C2: RE C3: RE C4: RE C4: RE	C:8% ow Count50 for 150mm 6		1355– 1354– 1353– 1352– 1351– 1350– 1349– 1348– 1347–
9	c7-								92	5						C7: RE	C:1.2/1.30 mRQD:0.7/1.30 m		1346-
				Environn	nent & Infra	struct	ure	Sc	lution	s L	GGE	D BY:	BW				COMPLETION DEPTH:	15.4 m	
	1	N	ood.		1 - 1925 18	h Ave	nue) NI		E	NTER	ED BY	: JR				COMPLETION DATE: 4	4/2021	
					Calgary, A	B T2E	70	8		R	EVIEV	VED B	IY: MF	P				Page	1 of 2

CLIENT: Thre	ee Sisters Mountain Villag	e Properties Ltd.	PROJECT	T: Resort \	/illage P	hase 1 - G	eotechnica		BOREHOLE NO: BH21-RV-05-	4"	
DRILLER/DR	ILL: Geotech Drilling/Fras	te DR 257	Canmore,						PROJECT NO: CG09140		
	dex/Wet Rotary		NORTHIN		62.19 E/				ELEVATION: 1355.1 m AZIMUT	/DIP:	
SAMPLE TYP		NO REC					GRAB				
DEPTH (m) CORE RUN SOIL SYMBOL		K & SOIL RIPTION	ITE CHIPS ILTE CHIPS ILTE CHIPS ILTE CHIPS ILTE CHIPS		(%) ODX	38F 3	OINT LOAD L _{en} (M 6 9 MEATHERING (GR 3 4 CK STRENGTH (R	Pa) 12 ADE 1-6) 5 6 0-R6) R5 R8 300 mm) 40	ADDITIONAL INFORMATION	BACKFILL	
-11	at 10.3 m, some oxidation surfaces 			600	63				C8: REC:1.5/1.50 mRQD:1.4/1.50 m C9: REC:1.5/1.50 mRQD:1.1/1.50 m		13
-13 -14 -15	at 14.4 m, drill rods drop rubble below at 15.0 m, drill rods drop	oped to 15.4 m	<u>15.4m</u>	58	21				C10: REC:1.1/1.90 mRQD:0.4/1.90 m		13
-16	A.at 15.4 m, hard, competed by the second seco	upon completion n completion surface to 2.9 m with 1.3 cfilled with bentonite chips tector 155mm wide was	im i								1
-18											1
 	ood.	Environment & Inf 401 - 1925 1 Caldary		IE NE	El	DGGED BY	Y: JR		COMPLETION DEPTH: 1 COMPLETION DATE: 4/4		

CLIENT: Three Sisters Mountain Villag	e Properties Ltd.	PROJEC	T: R	esort Villa	ige P	hase 1 - Geotechnical	BOREHOLE NO: BH21-RV-06-4"	•	
DRILLER/DRILL: Geotech Drilling/Fras		Canmore,					PROJECT NO: CG09140		
METHOD: Odex/Wet Rotary					51 E/	STING: -93618.34	ELEVATION: 1355.5 m AZIMUTH/L	ρip:	
			_	SPT			IPT CORE PIEZOMETER HEAD SAND		
	K & SOIL RIPTION	TE CHIPS	T	(%)	RQD (%)	LLETS GROUT SPONT LOAD Lm (MPe) 3 6 9 12 • SRM WEATHERING (GRADE 1-6) 1 2 3 4 45 86 • ROCK STRENGTH (R0-R6) R1 R2 R3 R4 R5 R6 • SPT TY VLP7 (BLOWS/300 mm) 10 20 30 40 PLASTE MC LIQUID	ADDITIONAL INFORMATION	BACKFILL	ELEVATION (m)
CLAY (CL), silty, firm, bro SAND and GRAVEL (SM silty, very dense, well grad	wn, abundant rootlets, mois -GM) fine to coarse grained ded, grey, dry	; <u>}-0.1m</u>	G1		40 60 80				1355
			D2 G2					la ava ava ava s la ava ava ava ava	1354-
	sand composition, dense, d	iry	03			34	G2: MC:2% D3: Blow Count4/14/20 MC:1%		1353-
			G3			•	G3: MC:2%	يد محدة فيد لا يتدر عنه الم الأخرى في الأخرى التركيم الت	1352-
		X	M			•	D4: Blow Count7/24/26 MC:2%	د الا ه ال اه هيد د و الحاد كار عد د	1351-
at 5.5 m, seepage, wet		<u>6.1m</u>	G4			•	G4: MC:2% D5: Blow Count 18/50 for 75mm - MC:6%	1 a 15 4 15 9 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1350-
SILTSTONE, extremely w contact, dry	eathered, coal inclusion at		65						134 9 -
C1	2.0			0	0		C1: REC:0/0.30 m RQD:0/0.30 m sl 7.3 m, surface casing set C2: REC:1.4/1.50 m RQD:0.1/1.50 m	1 1 1	1348-
-9 c3at 9.0 m, COAL bed, bla below 9.1 m, core loss, j coal interbeds, highly frac	poor to no circulation, some			93	7		C3: REC: 0.9/1.50 m RQD :0.1/1.50 m		1347-
wood.	Environment & Infra 401 - 1925 18 Calgary, A	th Avenu	e N	blutions E	EN	GGED BY: BW TERED BY: JR VIEWED BY: MP	COMPLETION DEPTH: 63.0 COMPLETION DATE: 4/6/2	Dm	

			e Sisters Mountain Villa L: Geotech Drilling/Fra		es Ltd.	PROJE Canmor			esort Vi	llage P	hase 1 - Geotechnical		BOREHOLE NO: BH21-RV-06-4 PROJECT NO: CG09140	," 	
METH	IOD): Ode	ex/Wet Rotary			NORTH				1.51 E/	ASTING: -93618.34		ELEVATION: 1355.5 m AZIMUTH	/DIP:	
SAMF	۶LE	TYPE	TUBE		NO RECO			_	SPT		GRAB	_			
BACK	FIL	L TYP		ITE	BENTON	TE CHIPS	5	Z.	BENTON	NITE PE			PIEZOMETER HEAD SAND		_
DEPTH (m)	CORE RUN	SOIL SYMBOL	DESC	K & SC CRIPTIC			SAMPLE TYPE	SAMPLE NO	B B B B B B B B B B B B B B B B B B B	88 RQD (%)	SIGPOINT LOAD Log (MPa) 12 3 6 9 12 ♦ ISRM WEATHERING (GRADE 1-6) 1 2 3 4 5 6 ● ROCK STRENGTH (R0-R6) RI R2 R3 R4 R5 R6 ▲ SPT "N"♥ LPT (BLOWS/300 mm) 10 20 30 40 PLASTIC LOUID 20 40 60 80 80 80		ADDITIONAL INFORMATION	BACKFILL	
21 22	C11-		throughout at 20.1 m, regained cirr from 20.4 to 20.6 m, Cr 50mm thick from 21.5 to 21.9 m, so seams	OAL seams,					99 100	53			:11: REC:1.5/1.50 mRQD:1.1/1.50 m		1:
23	C12								100			c	12: REC:1.5/1.50 mRQD:1.4/1.50 m		1;
24	C13 •							*******	87	53		¢	: 13: REC :1.3/1.50 m RQD :0.8/1.50 m		1:
25	C14-		below 24.9 m, trace mr calcite on fracture faces	n thick calcite	a inclusions, so	me						c	:14: REC:1.5/1.50 mRQD:1.4/1.50 m		1:
27									100	93					1:
28	C15		below 27.1 m, some m to core axis	n thick calcit	e veins, parallel			000000000000000000000000000000000000000	103	83		C	:15: REC:1.5/1.50 mRQD:1.4/1.50 m		1:
29	C16-							000000000000000000000000000000000000000				C	16: REC:1.4/1.50 mRQD:1.4/1.50 m		13
								000000000000000000000000000000000000000	\$3	43					1;
					ment & Infra 01 - 1925 18						GGED BY: BW TERED BY: JR		COMPLETION DEPTH: 63 COMPLETION DATE: 4/6/2		
			ood.	1 1	Calgary, A	B T2E 7	718	- 46	5		VIEWED BY: MP			age	-

<u> </u>			Sisters Mountain Villag		-			/illage F	Phase 1 - Geotechnical	-	OREHOLE NO: BH21-RV-06-4		
<u> </u>			L: Geotech Drilling/Fras	te DR 257	Canmore		17				ROJECT NO: CG09140		
			x/Wet Rotary		-		and the second second	61.51 E	ASTING: -93618.34		LEVATION: 1355.5 m AZIMUTH	/DIP:	
SAMPL						_	SPT		GRAB			_	-
BACKF (m) HLd∃D	RERUN	SOIL SYMBOL	ROCI	K & SOIL		Т	()	RQD (%)	BELLETS GROUT BEPOINT LOAD Long (MPa) 3 6 9 12 \$ 6 9 12 \$ 6 9 12 \$ 1 2 5 6 \$ ROK STRENGTH (RO-R6) R1 R2 R3 R4 R5 R6 \$ \$ 0 30 30 40 9 40 \$ \$ \$ \$ \$ \$ 40 \$ 40		ADDITIONAL	BACKFILL	ELEVATION (m)
-31 -32	17		below 30.1 m, C17 core returns water turned black below 31.6 m, poor reco extremely fractured		m,		200	2344 60 80		***	: REC:0.7/1.50 mRQD:0.4/1.50 m :: REC:0.6/1.50 mRQD:0.1/1.50 m		1325-
-33	19 19 19 19 19 19 19 19 19 19 19 19 19 1		at 33.6 m, 45 degree ca approximately 30mm thic	alcite filled joint/fracture k			800	100		C19	: REC:1.5/1.50 mRQD:1.5/1.50 m		1322-
- 35	28		at 35.3 m, highly fractur laminae	red, possible wash out of	coal		67	10			t: REC:1/1.50 m RQD:0.6/1.50 m		1321-
-36	21 21 21 2 21 2 21 2 2 2 2						\$7	50			t: REC:1.3/1.50 mRQD:1.2/1.50 m		1319-
-38	2		at 37.3 m, COAL, highly zone	y fractured, possible core	loss					 C2:	2 REC:1.1/1.50 mRQD:0.8/1.50 m		1318-
	8		from 38.2 to 38.6 m, co core loss from 39.2 to 39.5 m, ab degrees to core axis, son	undant fractures at 45	ble		73	53		C2	3: REC:1.5/1.50 m RQD:1/1.50 m		1317- 1316-
	V		ood.	Environment & In 401 - 1925 1 Calgary,		ue N		E	DGGED BY: BW NTERED BY: JR EVIEWED BY: MP		COMPLETION DEPTH: 63 COMPLETION DATE: 4/6/	2021	4 of

CLIE	NT:	Three	e Sisters Mountain Villag	ge Propertie	s Ltd.	PROJE	CT	: Re	esort Vi	llage F	Phase 1 - Geotechnical	E	BOREHOLE NO: BH21-RV-06-4	tu.	
DRIL	LEF	r/dril	L: Geotech Drilling/Fra	ste DR 257		Canmo							PROJECT NO: CG09140		
			ex/Wet Rotary		_					1.51 E	ASTING: -93618.34		ELEVATION: 1355.5 m AZIMUTH	/DIP:	
		TYPE						_	SPT		GRAB				
	(FIL			IITE				\square		NITE P	ELLETS GROUT #POINT LOAD Less (MP6) 3 6 9 12		PIEZOMETER HEAD 🗔 SAND		(E)
DEPTH (m)	CORE RUN	SOIL SYMBOL		K & SO CRIPTIC			SAMPLE TYPE	SAMPLE NO	<pre> set align</pre>	8 RQD (%)			ADDITIONAL INFORMATION	BACKFILL	ELEVATION (m)
- - - - - - - - - - - - - - - - - - -	C24		below 40.6 m, grey, oc stringers	casional mm	thick calcite							C24	4: REC:1.5/1.50 mRQD:1.4/1.50 m		1315-
-42	C25								909	63		C 2	5: REC:1.5/1.50 mRQD:0.7/1.50 m		1314-
-43			below 43.0 m, possibly	coarser grain	ned, grey to ligi	ht			400	7		•••			1313-
- - - - - - - - - - - - - - - - - - -	C26		grey, competent									C24	6: REC:1.55/1.50 m RQD:1.4/1.50 m		1312-
-45	C27								103	63			7: REC:1.5/1.50 m RQD:0.2/1.50 m		1311-
									100	13					1310-
-47	C28								100	67		C26	8: REC:1.5/1.50 m RQD:1/1.50 m		1309-
48	C29												9: REC:1.5/1.50 m RQD:1.4/1.50 m		
49	C30								100	93					1307-
			ood.		ment & Infra)1 - 1925 18 Calgary, A	th Aver	nue	NE		EN	ITERED BY: BW ITERED BY: JR VIEWED BY: MP	C36	COMPLETION DEPTH: 63 COMPLETION DATE: 4/6/	2021	5 of 7

			ee Sisters Mountain \ LL: Geotech Drilling			Canmo		_			nase 1 - Geotechnica		BOREHOLE NO: BH21-RV-06 PROJECT NO: CG09140		
METH	10	D: 0	dex/Wet Rotary			NORTH	IINC	G: 6	65896	1.51 EA	STING: -93618.34		ELEVATION: 1355.5 m AZIMU	TH/DIP:	
SAMF		E TYF	E TUB	E				_	SPT		GRAB				
BACK	FI		PE BEN	ITONITE	BENTO	NITE CHIP	S	Ŭ	BENTON	IITE PE			PIEZOMETER HEAD SAND		_
DEPTH (m)	CODE DI IN	SOIL SYMBOL	RODE	DCK & SC			SAMPLE TYPE	SAMPLE NO	Secovery (%)	88 RQD (%)	▲ SPT "N" ♥ LPT (BLOWS/ 10 20 30 PLASTIC MC LH	ADE 1-6) 5 6 0-R6) R5 R6 300 mm) 40	ADDITIONAL INFORMATION	BACKFILL	
51	ca		MUDSTONE, dark g		fractures,	<u>51.1m</u>			900) 9000	8			C31: REC:1.5/1.50 mRQD:1.5/1.50 m		13
3	cx								99	60			C32: REC:1.4/1.50 m RQD:1.2/1.50 m		13
4	C3	3							100	63			C33: REC:1.5/1.50 mRQD:0.8/1.50 m		1:
5 6	C3		from 55.1 to 55.4 stringers, occasiona	m, locally abunda I fractures	ant calcite								C34: REC:1.5/1.50 mRQD:1.5/1.50 m		1:
7									100	100					12
8			from 57.9 to 58.1	m, locally highly l	fractured				53	60			C35: REC:1.4/1.50 mRQD:1.2/1.50 m		12
9	СЗ												C36: REC:0.8/1.50 mRQD:0.7/1.50 m		12
			at 59.3 m, lost circ from 59.4 to 61.3	culation m, rods fall, poss	ible VOID				53	7					. 1:
	-			Enviro	nment & In	frastruci	ture	Sc	olution		GGED BY: BW		COMPLETION DEPTH:		
		V	ood.		101 - 1925 Calgary				E	EN	ITERED BY: JR		COMPLETION DATE: 4/		6 0

CLIENT	: Thre	e Sisters Mountain Villag	e Properties Ltd.	PROJE	CT:	Re	esort Vi	llage	Pha	se 1 - C	Geot	echr	nical			BOREHOLE NO: BH21-RV-06-	! "	
DRILLE	R/DRI	LL: Geotech Drilling/Fras	te DR 257	Canmo	re, A	٨B										PROJECT NO: CG09140		
		lex/Wet Rotary		NORTH				1.51 E	EAS				34			ELEVATION: 1355.5 m AZIMUTH	/DIP:	
SAMPL							SPT				GR/							
BACKF		PE BENTON	ITE BENTON		Π			NITE P		3	POINT 6	LOAD	l _{pes} (MP) 9			PIEZOMETER HEAD SAND		Ê
DEPTH (m)	SOIL SYMBOL		K & SOIL CRIPTION		SAMPLE TYPE	SAMPLE NO	B RECOVERY (%)	ROD (%)	\vdash		OCKS R	TRENG	TH (R0- 14 F	15 R6 10 mm) 40		ADDITIONAL INFORMATION	BACKFILL	ELEVATION (m)
- œ		from 61.3 to 61.6 m, rul	ble				20	0								C37: REC:0.3/1.50 mRQD:0/1.50 m		1295-
-62		from 62.2 to 62.3 m, cla below)	y (competent rock above a	nd			100											1293-
-63		END OF BOREHOLE AT Borehole open to 63.0 m Water level at 44.9 m upo	upon completion	<u>63.0m</u>					~							Could hear water trickling. Water level probe beeped on and off most of the hole, unable to determine water level		<u>∑</u>
64		4.5" ID PVC installed from stick-up	n surface to 9.1 m with 1.25 kfilled with bentonite chips tector 155mm wide was	im					99 93 83									1292
65																		1290
-66																		1289
													······					1288
									**									1287
									***									1286
			Environment & Infr							GED BY						COMPLETION DEPTH: 63		
	W	ood.	401 - 1925 18 Calgary, A				-			ERED B			•			COMPLETION DATE: 4/6/		7 of 7
	59.1852	Carbon Contraction and Contraction						I 15			DT:	(V)			_	1	aye	1 01 1

CLIEN	IT:	Three	e Sisters Mountain Village	e Properties Ltd.	PRO	JECT	: Re	sort Villag	e Phase	1 - Geotec	hnical		BOREHOLE NO: BH21-RV	07-4"	
<u> </u>			L: Geotech Drilling/Fras		-	more,							PROJECT NO: CG09140		
METH	IOD): Od	ex/Air Rotary		NOF	RTHIN	G: 5	659077 E	ASTING:	-93510.21	I		ELEVATION: 1351.1 m		
SAMP	LE	TYPE					Ø			GRAB					
DEPTH (m)	CORERUN	ы	s		ONITE C	SAMPLE TYPE	\square	10	Source Source	CPT V, (m/s) 300 CPT V, (m/s) 300 CPT SPT N(60) (BL 30 MC Lls	80 400 400		ADDITIONAL	BACKFILL	ELEVATION (m)
-1-2-3			TOPSOIL and ORGANIC prown, frozen SAND (SM), fine to coarse coarse grained), trace clar clanse SILTSTONE, grey to dark very dusty drilling below 2.7 m, powder/row weathered from 7.0 to 7.3 m, COAL	a grainad, silty, gravely y, brown, well graded, o grey, extremely weathe ck flour returns, extreme	(fine to compace ared, dry, ared, dry,	2m	D1 G1 G2 G2 G3		PLASTIC			Grav	Slow Count 10/7/8 245% WC:5% et 23% Sand:46% Fines:31% Blow Count 50 for 0mm		1351-
-9															1342
	-			Environment & l						D BY: BW			COMPLETION DEPTH		
		W	ood.	401 - 1925 Calgary						ED BY: JF NED BY: 1			COMPLETION DATE:	4/2/2021 Page	
							-		I LEVIE!	TEU DI. I	VIE			raye	1 01

JLIEN	IT:	Three	Sisters Moun	tain Village Properti	es Ltd.	PROJEC	T: Re	sort Villa	e Phase 1	- Geotech	nical	BOR	HOLE NO: BH21-R	/-07-4"	
				illing/Fraste DR 257	,	Canmore						_	ECT NO: CG09140		
			x/Air Rotary						ASTING: -				ATION: 1351.1 m		
SAMPI				TUBE						GRAB					
DEPTH (m)	CORERUN			BENTONITE SOIL DESCRIPTI	DN			20	● S _{anat} O S 40 - SCP1 0 200 - CPT 0 200 N ♥ LPT N - CP1 20 PLASTIC N	(kPa) 60 V, (m/s) 300 q. (BAR) 300	80 400 400 /S/300 mm) 40		ADDITIONAL INFORMATION	BACKFILL	
11			circulation, no o	mpetent material, han cuttings returns, hamr	d drilling, no ner engaging	<u>10.4m</u>									1:
12			Borehole open Borehole dry up 4.5" ID PVC ins stick-up	stalled from surface to	1.5 m with 1.35										1:
13			surface to 1.5 r	casing protector 155n											1
4											÷				1
5															1
6															1
7															1
8															1
9															1
				Enviro	nment & Infr	astructu	re Sol	utions	LOGGED				OMPLETION DEPTI		
			boc	4	01 - 1925 18 Calgary, A	ith Avenu	Je NE		ENTERED	BY: JR		C	OMPLETION DATE:	4/2/2021	1

DRILLER/DRILL: Geotech Drilling/Fraste D METHOD: Odex/Air Rotary SAMPLE TYPE TUBE BACKFILL TYPE BENTONITE	NO RECO	DVERY	HING	6: 56 ∑]SF	PΤ			AB		PROJECT NO: CG09 ELEVATION: 1348.0 	m CORE	
SAMPLE TYPE TUBE BACKFILL TYPE BENTONITE	IL PTION	DVERY	s (SI BE	PT ENTONITI 20		GR.	AB		LPT [CORE	
BACKFILL TYPE BENTONITE	BENTONI IL PTION	ITE CHIP	rs (BE		● S 0 40	S					
	IL PTION		ΓĪ		20	● S 0 40		OUT		PIEZOMETER HEAD	SAND	
OB SOIL SYMBO	rest debris, abundant		3	SAM	10 ▲SPT 10	0 200 	SCPT V, (m/s) 0 300 CPT q, (BAR) 0 300 - CPT SPT N(60	8) 60 400 400 (BLOWS/300 m 40 LIQUID	m)	ADDITIONAL INFORMATIO	LILL FILL	ELEVATION (m)
7 TOPSOIL and ORGANICS for rootlets, dark brown, frozen SILT and CLAY (ML-CL)) san gravelly (fine grained), brown, graded, possible boulders, dry 1 CLAY TILL (CL) silty, sandy, 1 2 CLAY TILL (CL) silty, sandy, 1 3 at 3.5 m, seepage observed, abundant coal debris 4 SILTSTONE, dark grey, mm si flour, dry, dusty drilling 5 6 6 COAL, black, some interbedde 7 SILTSTONE, dark grey, mm si flour, dry, dusty drilling elow 7.6 m, weathered, bro from 8.2 to 8.5 m, COAL bec 9 from 8.2 to 8.5 m, COAL bec	dense (possibly frözen fine grained, some gra- stiff, low plastic, dark gr , moist , locally strong H2S od zed angular fragments ad mudstone, dry	<u>1.9m</u> <u>1.9m</u> vel rey to dour, <u>4.1m</u> s/rock <u>6.1m</u>		5 D1 G1 D2 G2 D3 G3 G4 D4		PLASTIC	MC			D1: Blow Count2/1/25 MC:145% G1: MC:16% Gravef25% Sand 22% Fines:53% D2: Blow Count11/18/22 MC:7% G2: MC:7% G3: Blow Count6/12/12 MC:7% G3: MC:8% G4: MC:2% D4: Blow Count50 for 0mm REC:0/0.50 m	Q	
	nvironment & Infra 401 - 1925 18 Calgary, A	8th Ave	nue	• NE			ED BY: I RED BY:		-	COMPLETION D	ATE: 3/31/202	

CLIE	NT:	Three	Sisters Mountain Villag	je Properties Ltd.	PROJE	CT:	Re	sort Villa	ge Phase	e 1 - Ge	otechnic	al		BOREHOLE NO: E	H21-RV-G1-4	17	1.00
DRIL	LER	VDRIL	L: Geotech Drilling/Fras	ste DR 257	Canmo	re, i	AB							PROJECT NO: CO	609140		
METH	HOD): Ode	ex/Air Rotary		-			659157.4	9 EASTI					ELEVATION: 134			
SAM	PLE	TYPE	TUBE	NO REC	OVERY		⊠s	₽Т		G	RAB		[::]	LPT	CORE		
BAC	< FIL	.L. TYF	E BENTON		NITE CHIP	s	B	ENTONIT	E PELLET	s	ROUT			PIEZOMETER HEAI	SAND		
DEPTH (m)	CORE RUN	SOIL SYMBOL		soil Cription		SAMPLE TYPE	SAMPLE NO	11 11 SPT 1	00 20	SCPT V, (m/s CPT q, (BAR) 30 - CPT SPT N 3 MC) 00 44)0 44 (60) (BLOWS/3	00 mm) 0		ADDITION INFORMAT		BACKFILL	ELEVATION (m)
-11			below 10.4 m, extremel seepage COAL, black, some intert	y weathered, dark grey, po	13.3m												1337- 1336- 1335- 1334-
			SILTSTONE, dark grey, n flour, dry, dusty drilling	nm sized angular fragmeni	14.6m ts/rock												1333
- - - - - - - - -																	1332
- - - - - - - - -																	1331 [.]
- - - - - - - - - - - - - - - - - - -																	1330
				Environment & Info					LOGGE					COMPLETION			
		N	ood.	401 - 1925 18 Calgary,	8th Aver	ועפ דד) NE R		ENTER					COMPLETION			
	1.1			Guigaly,	a state of spinor is		-		REVIE	NED B.	r: MP				Pa	age 🕽	2 of

		Sisters Mountain Village Properties Lto L: Geotech Drilling/Fraste DR 257	I. PROJEC Canmore		sort Villag	e Phase 1 - Geotechnical		BOREHOLE NO: BH21-RV-G1- PROJECT NO: CG09140	4"	
		ex/Air Rotary			659157 49	EASTING: -93701.84		ELEVATION: 1348.0 m		
	LE TYPE		NO RECOVERY			GRAB	1.0			
	FILL TYP		BENTONITE CHIPS							
ACK			BENTONITE CHIPS		T					
DEPTH (m)	CORE RUN SOIL SYMBOL	SOIL DESCRIPTION	SAMPI F TYPE	SAMPLE NO	10	− CPT q. (BAR) 200 300 400 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100)	ADDITIONAL INFORMATION	BACKFILL	
21										13
3		from 22.7 to 23.1 m, COAL bed, black, d	iry							13
5										1:
6										1:
27										13
8										13
9										1
		Environme	nt & Infrastructu	re So	lutions	LOGGED BY: BW		COMPLETION DEPTH: 50).3 m	
			1925 18th Aven			ENTERED BY: JR		COMPLETION DATE: 3/3		

CLIE	NT: 1	Three	Sisters Mountain Villa	ge Properties Ltd.	PROJEC	CT:	Resort Vill	age Phase	e 1 - Geo	technical		BOREHOLE NO: BH21-RV-G1	-4"	
DRIL	LER/I	DRIL	L: Geotech Drilling/Fra	ste DR 257	Canmore	e, A	В					PROJECT NO: CG09140		
			x/Air Rotary				: 5659157	49 EASTI				ELEVATION: 1348.0 m		
SAM		_					SPT							
BACK (W) HLABO	CORE RUN			NITE BENTON			LE NO	20 40 	C S _{standtar} (kl - SCPT V ₆ (m/s) 0 300 - CPT q. (BAR) 0 300 - CPT q. (BAR) 0 300 - CPT SPT N(6)) 30 MC	Pa) 80 400 400 0) (BLOWS/300 40 LIQUID		ADDITIONAL INFORMATION	BACKFILL	ELEVATION (m)
31			below 31.8 m, some la possibly fractured	rger fragments (up to 10mm	1), wet,									1317-
-33			below 34.4 m, interbed	ded coal seams, easy drillir	ng									1315-
-35														1313
- 36											Wi	ater level probe beeped on and off most of the ite, water depth is approximate		1312- \[\sqrtspace{2}
-37														1311-
- 38														1310-
		1	1	Environment & Infr					ED BY: I			COMPLETION DEPTH: 5		
	V	V	ood.	401 - 1925 18 Calgary, A	th Aven	ue TR	NE		RED BY:			COMPLETION DATE: 3/3		
	•			Cargary, /	NO 12E /	10		REVIE	WED BY	: MP			Page	4 of (

CLIEN	IT:	Three	e Sisters Mountain Villag	e Properties Ltd.	PROJ	ECT	: Re	sort Villag	je Phase	e 1 - G	eotechn	ical	BOREHOLE	NO: BH21-RV-G	1-4"	
DRILL	ER	VDRIL	L: Geotech Drilling/Fras	te DR 257	Canm								PROJECT	IO: CG09140		
METH	OD	D: Ode	ex/Air Rotary		NORT			659157.4	9 EAST	ING: -	93701.8	4	ELEVATION	l: 1348.0 m		
SAMP	LE	TYPE	TUBE				\boxtimes				GRAB]lpt	CORE		
BACK	FIL	L TYP	PE BENTON	ITE BENTO	NITE CHI	PS	E	ENTONITI	E PELLE	rs	GROUT		PIEZOMETE	R HEAD 🔀 SAND		
DEPTH (m)	CORE RUN	SOIL SYMBOL		Soil Ription		SAMPLE TYPE	SAMPLE NO	1	2 44 	SCPT V, (n 0 -CPT q (BA 0 -CPT SPT) MC	60 V5) 300 R) 300 N(60) (BLOWS 30 LIQUIC	40		DITIONAL DRMATION	BACKFILL	ELEVATION (m)
41 42 44 45 48 49			below 40.3 m, possible poor air circulation at 42.3 m, no circulation engaging, very fractured, VOID , air coming out of h strong H2S odour	ı, no cuttings return, ham gripping onto rods	mer 45.4n				PLASTIC	MC						1307- 1306- 1305- 1304- 1303- 1302- 1300- 1300- 1300- 1299-
-				Environment & In	frantum			lutions	LOGG	ED BY	BW		COMPI	ETION DEPTH:	50.3 m	
			ood	401 - 1925	18th Av	enu	e NE		ENTE					LETION DATE: 3		
	WOOD.					E 71	8				BY: MP		 			5 of

CLIE	NT:	Three	e Sisters Mountain Villag	ge Properties Ltd.	PROJE	СТ	Re	sort Villa	ige Phas	ie 1 - G	eotechr	ical		BOREHOLE	NO: BH21-RV-G1-	4"	
DRILI	LER	/DRIL	L: Geotech Drilling/Fra	ste DR 257	Canmo	ore,	AB							PROJECT N	O: CG09140		
METH	łod	: Od	ex/Air Rotary		NORTI	HIN	G: 5	59157 .	49 EAST	'ING: -	93701.8	4		ELEVATION			
SAMF	PLE	TYPE									GRAB]lpt			
DEPTH (m)	CORE RUN	Ъ		SOIL CRIPTION		SAMPLE TYPE	<u> </u>	SP		CPT Q (B/ - SCPT V, (n - CPT Q (B/ 00 - CPT SPT 20 MC	k(kPa) 60 1/s) 300 R) 300 N(60) (BLOW 30 LIQUII	40		ADD	TIONAL RMATION	BACKFILL	ELEVATION (m)
-51			END OF BOREHOLE AT Borehole open to 49.6 m Borehole dry upon compl 4.5" ID PVC installed fror stick-up Annulus around PVC bac surface to 4.6 m.	upon completion letion n surface to 4.6 m with 1.3 i skfilled with bentonite chips otector 155mm wide was ins	m from				20		60	80					1297- 1296- 1295- 1294-
- 55																	1293-
56																	1292-
-57																	1291-
-58																	1290-
59													2				1289-
											: :	: :			TION DEPTH: 50	2	
č			ood.	Environment & Infra 401 - 1925 18				Juons		ED BY					ETION DEPTH: 50 ETION DATE: 3/31		1
	V		000.	Calgary, A	B T2E	71	8				BY: MP						6 of 6

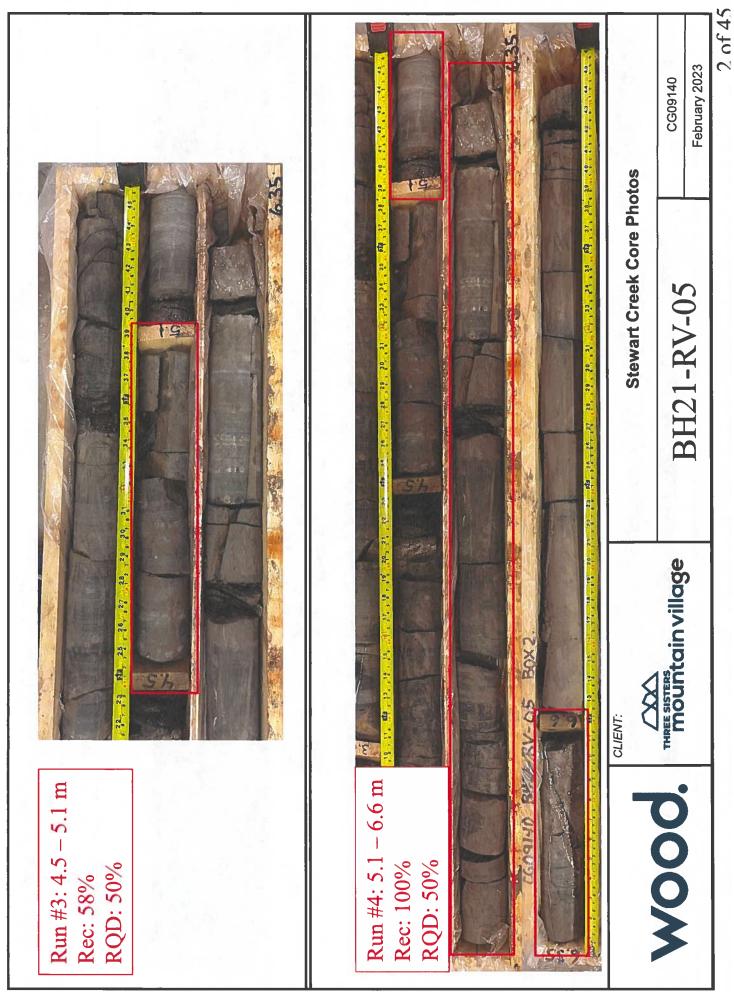
CLIEN	NT:	Three	e Sisters Mountain Village Properties Ltd.	PROJ	СТ	Re	sort Villag	e Phase 1 - C	Seotechnical		BOREHOLE NO: BH21-RV-	G2-4"	1
			L: Geotech Drilling/Fraste DR 257	Canmo							PROJECT NO: CG09140		
METH	IOD): Ode	ex/Air Rotary					1 EASTING:	-93603.95		ELEVATION: 1351.6 m		
		TYPE		RECOVERY		⊠s			GRAB				
BACK	FIL	L TYF		NTONITE CHI	PS	B	ENTONITI		11-March		PIEZOMETER HEAD 🔝 SAN	D	
DEPTH (m)	CORE RUN	SOIL SYMBOL	SOIL DESCRIPTION		SAMPLE TYPE	SAMPLE NO	1(300 400 SAR) 300 400 T N(60) (BLOWS/300 mn 30 40 LIQUID	1)	ADDITIONAL INFORMATION	BACKFILL	
	\vdash		TOPSOIL and ORGANICS forest debris, abu	ndant 0.2m	$\overline{\mathbf{n}}$	D1	20	40	<u>60 80</u>	D1: 8	low Count6/19/33 3%		
1			Tootlets, brown, dry SAND and GRAVEL (SM-GM) fine to coarse silty, brown, dense, well graded, possible cob	grained,		G1 D2	•	•		G1: M	IC:1%		135
2		10000000000000000000000000000000000000			X				36	D2: B MC:1	low Count2/12/24 %		13
			below 2.0 m, increased fine to coarse graine composition, some silt, moist	ea sana		G2 D3	•				£35% Sand:51% Fines:14%		13
3					X		•			56MC:1	low Count6/19/37 %		
4		A CONTRACTOR OF A CONTRACTOR O	below 3.5 m, moist to wet/seepage			G3	•				IC:4% at 3.5 m, Sulphate = 0.005 % SQ		
5			below 4.3 m, some to abundant silt pockets, saturated/freewater	, dark grey, 5.2m	X	D4				D4: B MC:9	low Count4/7/14 %		1:
8			SILTSTONE, grey, mm sized angular fragmer harder drilling	nts, dry,		D5 G4	•			· · · · ·	low Count50 for 0mm IC:4%		
7										· · · · · · · · · · · · · · · · · · ·			13
3			from 7.9 to 8.0 m, COAL bed, black, dry										1:
)													1
													1
			Environment					LOGGED B			COMPLETION DEPTH		
				925 18th Ave Jary, AB T28				ENTERED E			COMPLETION DATE:	4/2/2021 Page	

CLIEN	NT:	Three	Sisters Mountain Villag	ge Properties Ltd.	PROJEC	;T:	Resort Villa	ge Phase	1 - Geotechn	ical	BO	REHOLE NO: BH	21-RV-G2-4	n	
DRILI	LER	/DRILI	L: Geotech Drilling/Fra	ste DR 257	Canmore	e, AE	В				PR	OJECT NO: CG	9140		
METH	HOD): Ode	x/Air Rotary		NORTHI	NG:	5659033.3	1 EASTIN	G: -93603.9	5		EVATION: 1351.			
SAMF	PLE	TYPE	TUBE		ECOVERY		SPT		GRAB		[::]LP1		CORE		
BACK	FIL	L TYP	E BENTON	IITE BENT	ONITE CHIPS	Ó	BENTONIT		GROUT		PIE	ZOMETER HEAD	SAND		
DEPTH (m)	CORE RUN	SOIL SYMBOL		SOIL CRIPTION	SAMPI E TVDE	OMITLE ITTE		Si 10 200 C 10 200 10 200 11 ▼ LPT 11(0 20 PLASTIC	D Suturnation (kPa) 60 2PT V, (m/s) 300 PT Q (BAR) 300 PT Q (BAR) 300 PT Q (BAR) 300 MC LIQUI	80 400 \$/300 mm) 40 80		additiona Informatic	L DN	BACKFILL	ELEVATION (m)
															1341- 1340- 1339-
- - - - - - - - - - - - - - - - - - -															1338-
- - - - - - - - - - - - - - - - - - -			below 14.3 m, weather	ed, grey to dark grey											1337-
- - - - - - - - - - - - - - - - - - -															1336-
- - - - - - - - - - - - - - - - - - -															1335-
- - - - - - - - - - - - - - - - - - -															1334-
															1333-
														Err	1332-
			ood.	Environment & I 401 - 1925	nfrastructur 18th Avenu	re S ue P	Solutions NE		D BY: BW D BY: JR			COMPLETION I			
			JUU.	Calgar	y, AB T2E 7	T 8			ED BY: MP						2 of 5

		e Sisters Mountain Village Properties L: Geotech Drilling/Fraste DR 257		JECT nore,		sort Villag	Phase 1 - Geotechnical		BOREHOLE NO: BH21-RV-G2- PROJECT NO: CG09140	t "	
		ex/Air Rotary				650033 31	EASTING: -93603.95		ELEVATION: 1351.6 m		
	LE TYPE						GRAB	['e'			
	FILL TYP						PELLETS		PIEZOMETER HEAD SAND		
ACK			BENTONITE CF	11F3			Scale Scale (kPa)			1	
DEPTH (m)	CORE RUN SOIL SYMBOL	SOIL DESCRIPTIC	ON	SAMPLE TYPE	SAMPLE NO	20 100 100 ▲ SPT 7 10	40 60 80 − SCPT V, (m/s) 200 300 400 −CPT q. (BAR) 200 300 400 400 7 42T N−CPT SPT N(60) (BLOWS200 mm) 20 30 40 40 40 50 4 60 4 80		ADDITIONAL INFORMATION	BACKFILL	
22 23 24		COAL, fractured, possible mudstone ir are wet from above	nterbeds, cuttings	im							13: 13: 13: 13: 13:
25	All and Branch										13
27		SILTSTONE, grey to dark grey, mm siz fragments, dry, harder drilling	zed angular26.8	<u>Im</u>							13
28											13
		E Environ	ment & Infrastru	Icture		lutions	LOGGED BY: BW		COMPLETION DEPTH: 48	.5 m	
			01 - 1925 18th Av	venu	e NE		ENTERED BY: JR		COMPLETION DATE: 4/2/		
			Calgary, AB T2	2E 7T	8		REVIEWED BY: MP			Page	

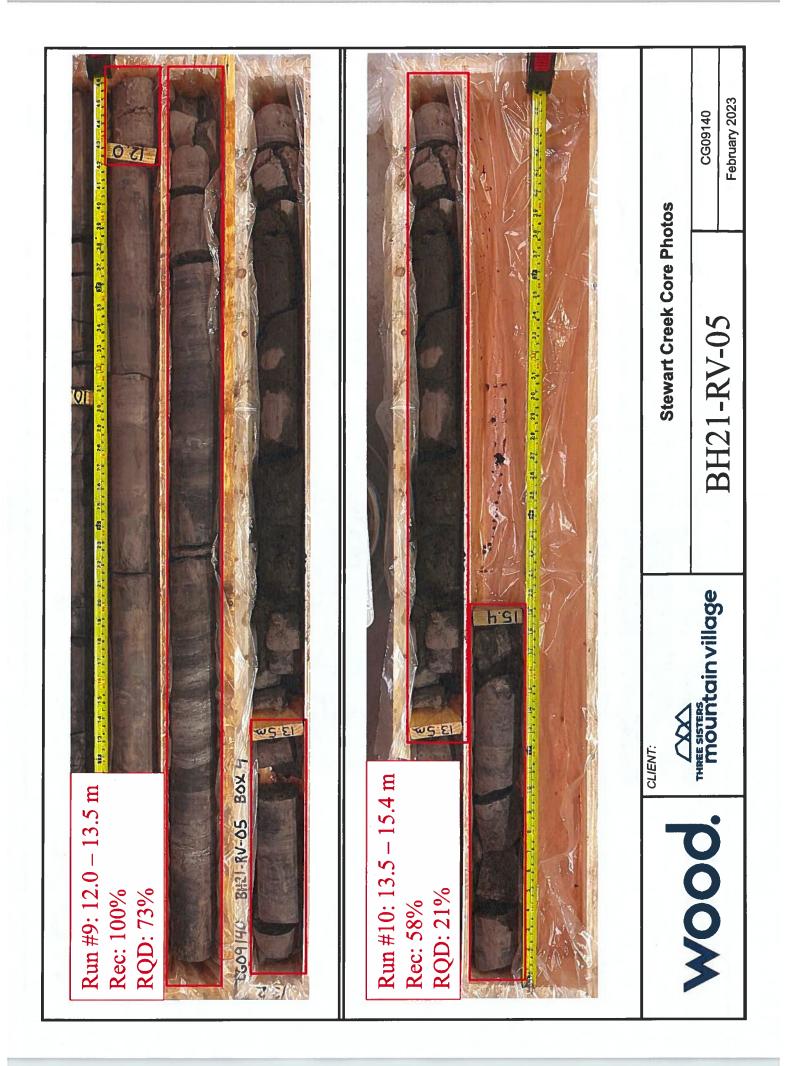
CLIEN	NT: Thr	ree Sisters Mountain Vill	age Properties Li	td.	PROJE	CT:	Re	sort Villa	ige Pha	se 1 - (Geotech	nical		BOREHOLI	E NO: BH21-RV-G 2	-4"	
DRILL	ER/DR	RILL: Geotech Drilling/Fi	raste DR 257		Canmor	e, A	٨B							PROJECT	NO: CG09140		
		dex/Air Rotary			NORTH	_			31 EAS			95			N: 1351.6 m		
-	PLE TY			NO RECO						_	GRAB			UPT			
	FILL T IONWAS IOS		SOIL SCRIPTION	BENTONI		SAMPLE TYPE		SP	100 100 T "N"♥ LPT 1 10 PLASTIC	40 - SCPT V, 200 - CPT q (1 200	(kPs) 60 (m/s) 300 BAR) 300	80 400 400 WS/300 mm 40		AD	R HEAD SAND	BACKFILL	ELEVATION (m)
-31																	1321– 1320–
-33													Cor on app	uld hear water trickli and off most of the h roximate	ng. Water level probe beep nole, water depth is	bed	1319- ∑ 1318-
- 35																	1317-
																	1316-
- 37																	1315-
																2	1314-
39																	1313-
	W	rood.	Environme 401	ent & Infra - 1925 181 Calgary, A	th Aven	ue	NE		ENTE	REDE	<u>r: BW</u> BY: JR BY: MI				Letion Depth: 4 Letion date: 4/2	/2021	4 of 5

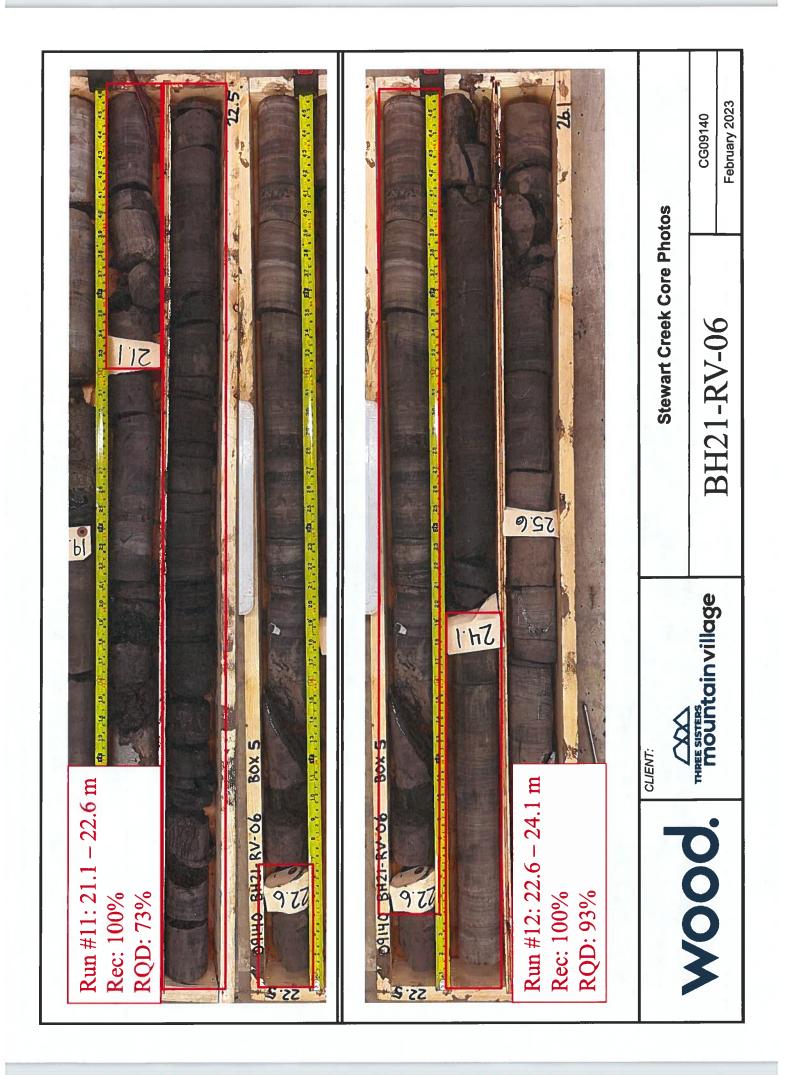
			Sisters Mountain Village Pro		PROJEC Canmore		esort Villa	je Phase 1 - Geotechn	ICAI	BOREHOLE NO: BH21-RV-G2 PROJECT NO: CG09140	-4"	
			x/Air Rotary		_		5659033.3	1 EASTING: -93603.9	5	ELEVATION: 1351.6 m		
		TYPE			_		SPT	GRAB				2 and
		TYPI										
DEPTH (m)	CORE RUN	SOIL SYMBOL	SOI DESCRI	L			2		80 400 400 5/300 mm) 40	ADDITIONAL INFORMATION	BACKFILL	
41 42 43												131 131 130 130
45			VOID, lowered rods with air su circulation, strong H2S odour	pply turned off, total	45.4m loss of							130
47												13
48			at 47.6 m, hard competent dr	rilling	<u>47.6m</u>							13
49			END OF BOREHOLE AT 48.5 Borehole open to 48.4 m upon 4.5" ID PVC installed from surf stick-up Annulus around PVC backfiller surface to 6.0 m. A square steel casing protecto around the PVC stick-up	completion face to 6.0 m with 1. d with bentonite chip	is from							13
								LOGGED BY: BW		COMPLETION DEPTH: 4	9 5	
			ood. 📑	vironment & In 401 - 1925				ENTERED BY: JR		COMPLETION DEPTH: 4		
	- V			Calgary	, AB T2E 7	TR		REVIEWED BY: MP		COM LENOT DATE. 4/	Page	

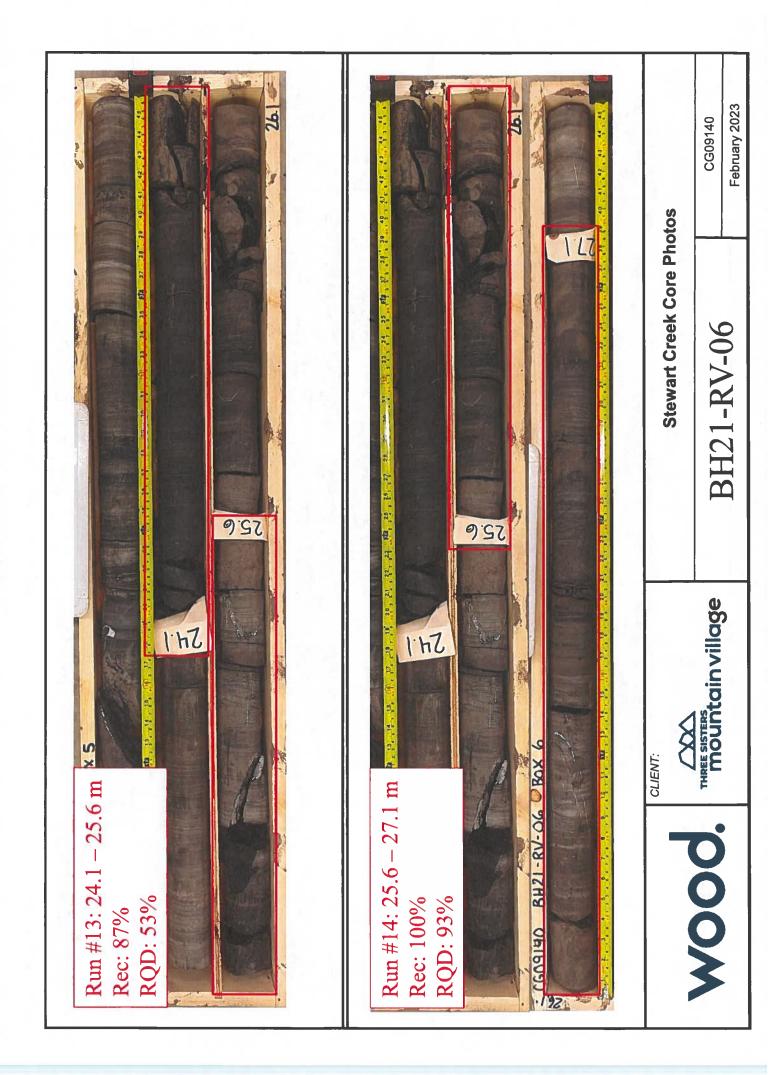

			e Sisters Mountain Villag		s Ltd.	PROJE			sort	Villag	e Phas	ie 1 - C	Geote	chnica	al					: BH21-R			
	_		L: Geotech Drilling/Fras	ste DR 257		Canmo	-			00.44		10.	00.40	7.04			-+			CG09140			
SAMP	_		ex/Air Rotary					3: 50		98.16	DEASI		-9349 GRAE						TION: 1	356.2 m	ORF		
BACK				ITE				_			PFILE									AD S/			
	CORE RUN	Ч		soil Criptic			SAMPLE TYPE	SAMPLE NO		20 100 100 ▲ SPT 1 10	€S 2 2 N'▼LPT N PLASTIC	- SCPT V, (00 - CPT Q (E 00 - CPT SP 20 MC	(kPa) 60 (m/s) 300 (AR) 300 T N(60) (E 30	80 400 400)) 0 mm)				ADDITI	ONAL		BACKFILL	ELEVATION (m)
			TOPSOIL and ORGANIC grained, rootlets, brown, SAND and GRAVEL (SM subangular to subrounde below 1.9 m, sand is br	frozen A-GM) fine to ed, dense, gre	coarse grained	- 71	X	G1 D1 G2	9							18 U		t 0.8 m, Si ow Count	ulphate = 0.0 16/21/27	04 % SQ			1356-
3	below 3.5 m, increased sand composition, der dense			sition, dense t	to very	X	D2 G3	•							49	2: Bla IC:3% 3: MC		6/21/28				1353-	
- 4						k K	X	D3									3: Bio C:5%		8/31/50 for 1	50mm	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -		1352-
								G4 D4									4: MC 4: Bic	:2% w Count	11/20/26		ي با الألغ مدر با بريير بر م	10 10 10	1351–
							X	G5	•						*		C:3%				ي با زيج و حد و روج بي و	(di 10) (di 10)	1350-
7 			below 7.1 m, gravelly, n	noist to wet			X	D5				26	······			D	5: Bic	w Count	13/14/12		رة مناع عام العام العام ال	(attability)	1349
- 8 			at 8.5 m, freewater				X	G6 D6	•		18					•	6: MC 6: Blc	:8% w Count	8/9/9		والتلاغ التاريخ التاريخ التاريخ	10 10	1348-
			ood.	ment & Infra 01 - 1925 18 Calgary, A	th Aver	nue	NE	utio		LOGG ENTE REVIE	RED B	Y: JF	2						ON DEPTI	3/22/20	n 121	of 4	

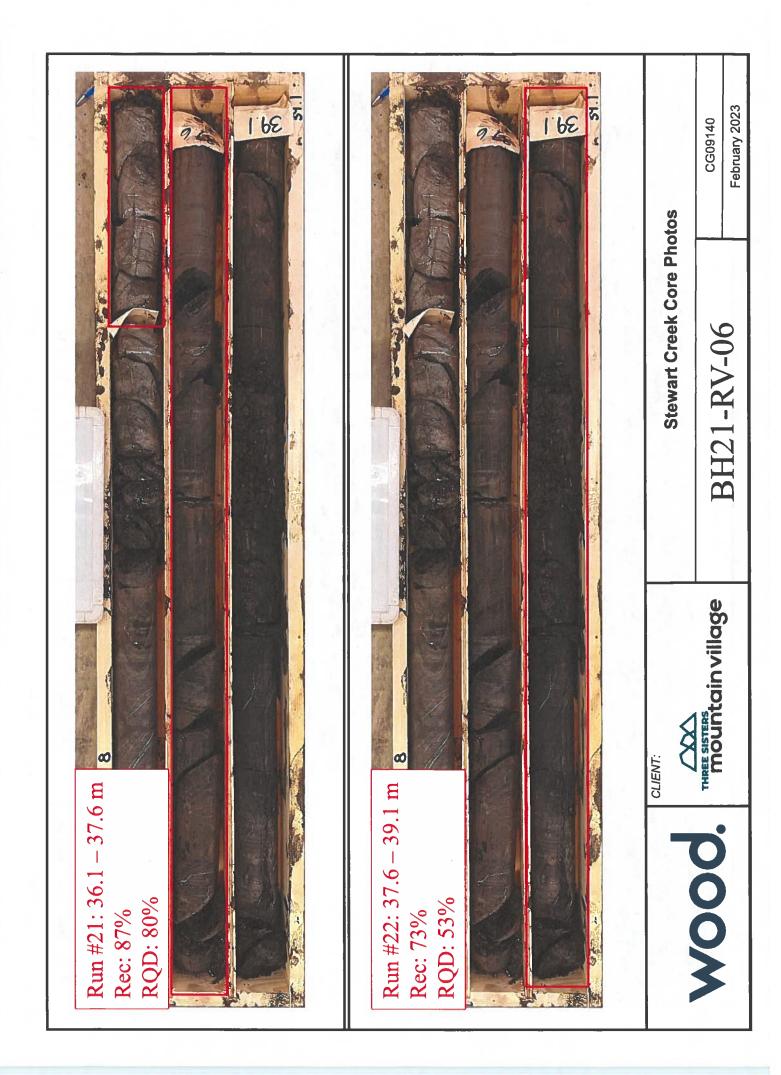
CLIENT: Three Sisters Mountain Village Properties Ltd.							PROJECT: Resort Village Phase 1 - Geotechnical								BOREHOLE NO: BH21-RV-G4-4"				
DRILLER/DRILL: Geotech Drilling/Fraste DR 257							Canmore, AB								PROJECT NO: CG09140				
METH	OD	: Ode	ex/Air Rotary			NORTH	IINC	G: 565	3898.1	6 EAS	ring: ·	93497.9	94		ELEVATIO	N: 1356.2	m	-	
SAMP	LE	TYPE		BE	NO RECO			SPT	_		_	GRAB			LPT		CORE		
BACK	FILI	L TYP	PE 🔲 BEI	NTONITE	BENTON	ITE CHIP	s	BEN	TONIT	E PELL	ETS 🚺	GROUT			PIEZOMET	ER HEAD [SAND		
DEPTH (m)	CORE RUN	SOIL SYMBOL	DE	SOIL ESCRIPT	TION		SAMPLE TYPE	SAMPLE NO	21 10 10 \$PT 11 21	0 NITULPTI PLASTIC	40 - SCPT V, (200 - CPT q, (B 200 V CPT SP1 20 MC 40	300	40			DDITIONAL ORMATIOI		BACKFILL	ELEVATION (m)
-11			at 10.4 m, some v surface casing	vet fine grained	l sand heaving int	0	X	D7	•			36		D7: E MC:S	Blow Count7/17 %	19			1346-
			below 11.3 m, silt	y, wet/saturate	d														1345-
-12								0			·····							(a) (a) (a) (a) (a) (a)	1344-
-13								23											1343-
-14			below 14.0 m, sat	lurated															1342-
-15			SILTSTONE grey to	o dark grey, hig	hly weathered, ha	<u>15.5m</u> arder													1341 [.]
-16			drilling																1340
-17	10 10 10 10 10 10 10 10 10 10 10 10 10 1		below 16.8 m, dai fragments and rock	rk grey, dry, mr flour	n sized angular si	listone													1339
-18	and the second second second second																		1338
																			1337
			_								GED B	· D\M	8 8		0	PLETION D		4 m	
í.			ood.	Envi	onment & Infi 401 - 1925 1	8th Ave	nue) NE	IONS		ERED E					PLETION D			
5					Calgary,							BY: MF	>						2 of

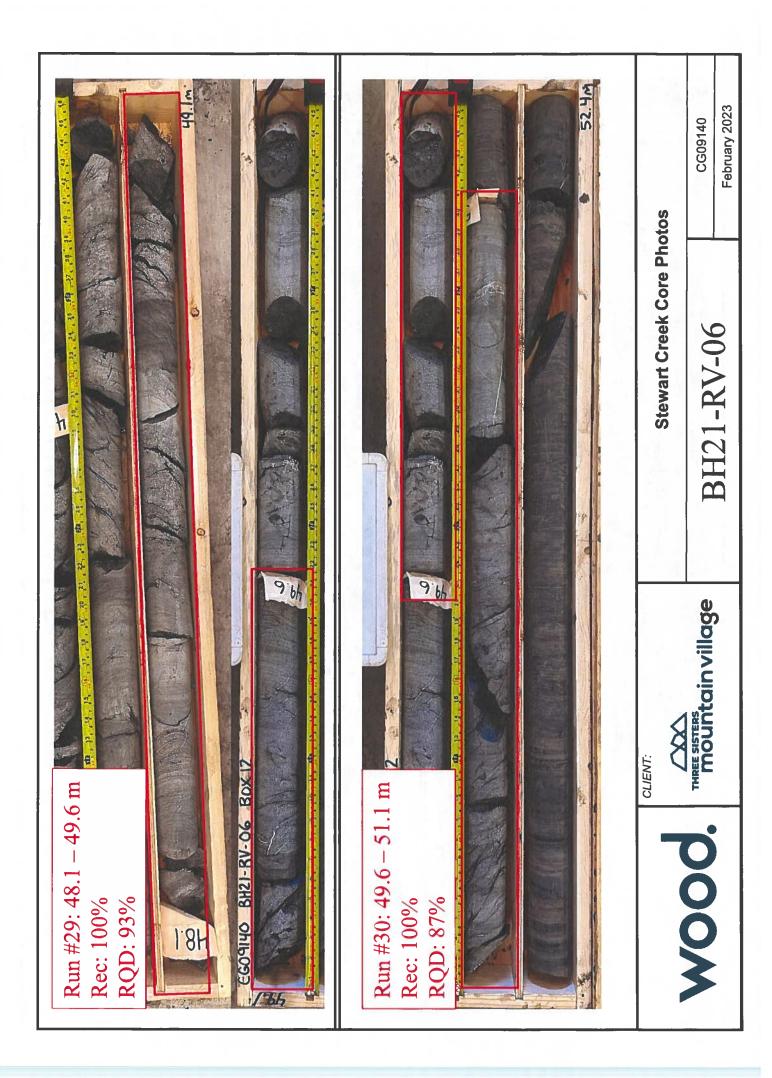
CLIENT: Three	e Sisters Mountain Villag	e Properties Ltd.	PROJECT: Resort Village Phase 1 - Geotechnical							BOREHOLE NO: BH21-RV-G4-4"			
	L: Geotech Drilling/Fras		Canmore	, AB					PF	ROJECT N	O: CG09140		
METHOD: Od	ex/Air Rotary		NORTHI	NG: 5	658898.1	6 EASTING	G: -93497.9	34	EL	EVATION	: 1356.2 m		
SAMPLE TYPE	E 🚺 TUBE		OVERY	\boxtimes	SPT		GRAB		ĿĿ	т	CORE		
BACKFILL TYP	PE BENTON	ITE BENTON	ITE CHIPS		BENTONIT	E PELLETS	GROUT		Pli	EZOMETER	R HEAD 🗔 SAND		
DEPTH (m) core run SOIL SYMBOL		Soil Cription	SAMDI E TVDE	SAMPLE NO	1	- SCP 10 200 - CP1 10 200 11 ▼ LPT 11 - CP 0 20 PLASTIC	Subjection (KPa) 50 KT V, (m/s) 300 T G, (BAR) 300 T SPT N(60) (BLOW 30 MC LIQUI	40 D			DITIONAL RMATION	BACKFILL	
21 22 23 24 25 26 27 28	below 25.9 m, possibly H2S odour, seepage	fractured, easier drilling, m											13: 13: 13: 13: 13: 13: 13: 13:
29	from 29.3 to 29.6 m, po	ssible COAL bed, easy dril	ling										13
		Environment & Infr	astructu	re Sol	lutions	LOGGED	BY: BW	1. 1.		COMPL	ETION DEPTH:	38.4 m	
	ood.	401 - 1925 18	3th Avenu	ie NE		ENTERE					ETION DATE: 3/		
		Calgary, /	AB T2E 7	T8			ED BY: MP)		1		Page	


			e Sisters Mountain Villa		Canmon	_			Geotechnical		BOREHOLE NO: BH21-RV-G4 PROJECT NO: CG09140				
			ex/Air Rotary					16 EASTING	-93497.94		ELEVATION: 1356.2 m				
		TYPE			RECOVERY		SPT		GRAB						
		LTY	and a second		NTONITE CHIPS						PIEZOMETER HEAD SAND				
DEPTH (m)	CORE RUN	SOIL SYMBOL	ſ	SOIL CRIPTION		SAMPLE TYPE	SAMPLE NO		60 80 V, (m/s) 300 400	-	ADDITIONAL INFORMATION				
-31			VOID, lowered rods with circulation, strong H2S i below 33.2 m, possibl	30.8 to 31.1 m, COAL bed, black, easy dri owered rods with air supply turned off, tota on, strong H2S odour '33.2 m, possible collapse material, hamn d intermittently, no circulation									132 132 132 132		
34 35													13		
3 6 37													13		
38				igaged intermittently impetent drilling, no cir	<u>37.8m.</u> rculation, no								13		
39			END OF BOREHOLE A Borehole open to 38.4 r Water level at 32.3 m u 4.5" ID PVC installed fro stick-up Annulus around PVC ba surface to 16.5 m. A square steel casing p around the PVC stick-up	chips from											
	_			Environment &							COMPLETION DEPTH: 38.4 m				
		W	00d.		25 18th Aven ary, AB T2E			ENTERED			COMPLETION DATE: 3/22/2021				
		· *		Laig	my, AD 122	- 10	•		D BY: MP			Page	4 (









rana ob Ha. Vel Davies vel Davies	d les		anani kalanga ki katala katalang port katalang katalang katalang	nano 1 Gladarendei Teolog	NO																11	5)
	64144		harayin Dayah Gali	Realt Type	TestType	Characterial L: Langth Induces contact points and second free face (bas)	De Case Danasta	Artel Pa HE Ours state	1]]].	1 04	Radio L.C	earry to		11	Ocamonta	0, ¹ (mm)	n. 1	United States	, 1 , 1 , 1 , 1	Correct Pade L Strangth PagNet			University University Companying (Sel) Brangin (Sel) Bigan
		1	2,00 2,00 3,20 3,00 4,00		Dignating Adag Dignating Adag Dignating Adag Adag Dignating	31 96 39	44 44	40 40	20 20	2020202		新聞	218,644 117,440 348,8772 12,834 14,836	EEEEEE			47.1	8.21 4.80 6.36 6.39 3.61 2.68	1,80 0,85 1,80 0,97 1,80			14 14 14 14 14 14	180.4 190.4 163,2 163,2 163,2 163,2 163,2 163,2 163,2 163,2 163,2 163,4 163,2 163,4 163,2 163,4 163,2 164,4 163,2 164,4 163,2 164,4 163,2 164,4 163,2 164,4 164,4 164,4 164,4 164,4 164,4 164,2 164,4 164,2 164,4 164,4 164,2 164,4 164,2 164,4 164,2 164,4 164,2 164,4 164,2 164,4 164,2 164,4 164,2 164,4 164,2 164,4 164,2 164,4 164,2 164,4 164,4 164,4 164,4 164,4 164,4 164,2 164,4
	- AT		4,10			12 17 40		40 40	ээ Э	63 NAA 65			8.000 94.000 90.812 37.522	EEEEE		<u>ska</u> 2	473 40.0 473 40.0	2.64 15.64 8.64 14,29	1,89 6,87 1,88 0,58 1,08 0,58 1,08 1,08 1,08 1,08 1,08 1,08 1,08 1,0	94.6		4 58 58 58	303.0
	P.11 P.11 P.11		1.30 1.35		Add	49 20		40 61	22 22		2446	發展	14,314	鎚锏			41.0 41.0 44.4 40.0	4,15 4,15 4,04	1,00 0,00 0,000 1,000	7.14		4	361.0 128.5 126.5 72,4 174.6
	P.11 P.11 P.11 P.11 P.11 P.11		140 7,30 7,40 7,50 7,80		Ourselvel Stansitivel Adal Olansitivel Olansitivel Olansitivel Olansitivel	41 10		00 00	<u>п</u> 11	NA NA 0.3 8.4	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EEEEEEEEEEE	38,852 16,388 16,842 11,476	医经验		SERVICE CONTRACTOR	40.0 90.0 45.4 49.1	7,66 4,17 6,17 7,15	1,44 1,29 0,38 0,34 1,09	6,41 4,44 7,40 1,47		4	1743 1743 1943 1943 1945
	8.1 9.1 9.1 9.1 9.1 9.1		7.60		Clanated Clanated Clanated Clanated	44 14 30 32	41 41 41 41			NA NA NA	8.0	Yahi Yahi	25.104 6.218 13.412	Viel Viel			01.0 01.0 01.0 01.0	344 740 128 8173	1/4	3.87 7.80 1.81			46.4 139.7 34.3 72.8 145.6
801474	- PLU	<u>n</u>	L04 L29 L35 L49 L71		Densire	73 19 14	41 40 40 40			NMA NMA NMA	04 12 12 14	No.	20.010 11.220 16.074	EEEEE		B BBB	90.9 90.9 90.9	7.44 6.78 8.12 8.42	1.09 1.09 1.09 1.09 1.09 1.09	12233		18 18 19 19	145.6 113.0 95.9 98.1 13.7
	AU AU AU		6.00		Ourosted Ourosted Ourosted Ourosted Ourosted	81 61 66	40 41 41				14	凝	1,878 15,250 16,846 16,846	E C C C C C C C C C C C C C C C C C C C		1000		146 148 471	12	52 52 51 51		18 18 19	92.9 92.9 91.2
	P.1		8.3% 8.45 9.61 98.13 98.15 98.46 19.46		Add Add			80 60 10	22 28 28	N/A 8,5 8,4	1.1 NØA	Value	18,770 6,046 7,982 16,200 16,200	EEEE			90.0 49.4 44.0 \$3.4	6.22 4.67 4.62 6.20	1.00 6.09 0.04 1.03 1.00	C E E E		10 10 10	101.0 72.0 96.7
	P.13 P.15 P.16 P.16 P.16 P.16		10,00 11,00 11,10 11,10 11,00 11,00		Add Digwidd Digwidd Digwidd Digwidd Digwidd Digwidd Digwidd Digwidd Digwidd	11 10 14	60 60 60	80	22	ate e a	18 18 18	遊園	37.629 8.084 38.776	Valid Valid Valid					100	11.2		14 19 19 19	94.0 81.4 293.7 84.0 187.0
	9,14 9,14 9,14 9,14 9,14 9,14		11,90		Dependent Dependent Antig Dependent	141 138 138	60	- 10	K	****	24 22 22 NM		41.476 18.876 14.726 11.082	Vale Vale		3800 3800 2134 3800	60.0 60.0 44.2 40.0	11.52 6.62 6.64 6.64 6.63	1.00	33333333		9 9 9	225.1 98.1 116.7 106.4 115.4 45.4 45.8
			12,25 12,44 12,44 12,45 12,75			46 10 27	80 80 80 80 80			NA NA NA	NA 02 14 14 14 14 14 14 14 14 14 14 14 14 14	333	11,002 30,006 31,270 15,406 5,599	EEEEEEE			84,8 80,9 84,9 84,9	434	1,40 1,50 1,50 1,50	8,28 6,41 4,38 8,01 6,17		54 58 58	1062,6 115,4 4544 4544
	P.11	U) H	12.15 (2.27) (2.27) (2.44) (2.44) (2.44) (3.44) (3.44) (3.44) (3.45) (3.45) (3.45)			o x = x	8			***		EEEEEEEEEEEEE	12,400 5,540 6,544 31,476 2,540 16,712 22,540 19,3712 19,370 19,370	A Contraction of the second se		E E E	81.0 81.0 81.0 81.0	2,46 8,16 8,87 8,80 2,86 8,56 8,11	6.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	4.07 44 45 15 15		9 9 9	\$1 1184 16,7 56,1 132,0 146,0
	PLT PLT		1.45 8.10 8.15 9.15					40 10 40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		155 E 2	Vala Vala Vala	22,340 19,828 8,908 8,908 8,908 9,478	EEEEE		A A A A	64.4 49.4 49.4 41.0	8,36 8,11 3,46 1,66 9,13	0.00	7.34 6.07 3.07 1.27		14 14 14	21.0
	AT RATE		1.01 11.05 11.05 12.05 12.75 12.90		E LE E E E	11	99 	. 49 . 92	45 50	NA 84 84 184	2 F F 1 F 19	We was	0.478 2.810 1.252 12.300 0.454	yela yela yela	Casi		90.0 94.0 91.0 91.0	8,13 8,73 8,33 8,33 3,43	1.09 1.07 1.09 1.09 1.09 1.09			4	18 142 64 67.0
	P.11 P.11 P.11 P.11	4	12.95		Add Denedd Add Add Denedd	8 1	80	92 92 92	48 28 38	NA 0.1		EEEEE				1094 1898 2752 1974	94.3 1958 47.4 11.7	243 1.11 1.49 2.44	1.00	1,31		99 19 19	94.5 94.7 94.5 11.7
Ę	P.11 P.11 P.11 P.11 P.12	<u>}</u>	12,46 13,22 13,36 13,36 13,49 14,23		Chernetical	21 16 16 16	40 40 40			******	14 94 14 14 14	湯湯	2,538 16,270 14,290 15,412			3000 3000 3000 3000	94.0 91.0 91.0 91.0	9.46 6.69 3.87 4.34	1,09 1,09 1,09 1,09	100 100 100 100 100 100 100 100 100 100			77.6
Ę	P.17 P.77 P.17 P.17		16,49		Danated Danated Danated Danated Acta	n n #	99 99 90	80	24	2223 2	12 12 11 14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2120	33333 33		1800) 3800 3600 1413	81.0 81.0 91.3 42.4	149	1.09 1.09 1.09 1.09 1.09 1.09 1.00 1.00	144 154		1	01.7 31.9 151.4 661.8 18.4 16.8 160.5
			15,44 15,71 14,25 14,20 14,40 17,10 17,20 17,21		Dependent	X28	8.8.8	80	26	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	NetA 0.4 1,0 1,1 NetA	- -	2,466 (8,469) 8,4457 11,878	经经			81.8 90,9 90,0 11,7	678 6,14 141 4,14	1,00 1,00 1,00	100		14 14	140.6 140.6 37.2 78.7
	- 10		17,10 17,10 17,20 17,21			11 12 12	40 40 40 40 40			3 3 3 4	1 64		6,842 11,876 16,396 11,872 34,180 32,144	EEEEE		E E E		144 121 127	1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00			10 10 10	37.2 757 64.8 64.8 64.8 1/4.6 1/4.6 1/4.6 1/4.6 1/4.6 1/4.6 1/7.2 1/1/7 1/1/7
	P.13 P.13 P.13 P.13		18,60 18,46 18,78 		Digmetrial Adda Digmetrial Adda	44 44	00 00	90 90	64 28	184 6,8 184	NKA	3333 33	18.874 34.376 8.696 18.854	新経		3000 4125 3000 1904	86.0 84.3 81.0 81.0	444 444 3,42 4,58 4,58 4,58	1,00 1,12 1,00 0,06 1,00 1,00	1,1		14 14 19	100.6 91.5 97.2 44.5
	P.11 P.11 P.11 P.11 P.11 P.11		16,19 19,49 26,10 20,40		Destated	11 10 10							32,144 (8,174 36,176 6,476 10,054 71,054 71,054 34,066 22,056 10,159 11,159	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		A A A A A	11111	434 434 434 437	1,00 1,00 1,00 1,00 1,00	451 443 443 7,44 419 419		14 18 14 14	117.2 (11.7 (33.6 124,6 124,6 106.8
	P.14 P.14 P.14 P.15 P.15		21.20 21.20 21.25 21.25		Adul Adul Darwind	10		80 80	44 25 28	- 6.7 - 6.4 - 146 - 146	1995 949 1995 1995	SEE SE	18.190 17.694 11.300 4.044 4.644				1913		0.91 1.00 1.60	4 N 149 147 158		14 10 10	108.8 161.9 61.6 81.6 42.3
	P.14 P.17 P.17		2140			20 10		99 99	41	HEA NEA	140A	湖湖	18,838 9,842 38,879	2		-	-01-	134 134 147	1,8 1,8 1,9 1,9 1,9			1 1 1	42.5 H.J 194.2 (197.)
Ē	P.71 P.71 P.71 P.71 P.71 P.71		22.11 22.41 22.41 23.41 24.41 24.41 24.41 24.41 24.41			2 4 4		. 90	-41		14 N#A	1993 1993 1993 1993 1993 1993 1993 1993	21-274 8-844 8-724	Valid			81.0 94.3 81.0 91.0	7.62 1.60 9.70	1.00	148		*	(17.) 32.3 44.8 15.4 35.5 44.5
	P.13 P.18 P.18 P.19 P.19 P.19		25.46 25.30 25.70		Diground Aula Digrothal Diground Diground Diground Diground	78	91. 91.		21			200 200 200	2,049 4,000 19,404 6,134 6,154	建建		2200 2000 2000	41.7 81.0 41.0 41.0		1.00 6.00 1.00 1.00 1.00 1.00 1.00	9121 121 125 125 125 125			94.5 44.4 37,7 4.0 141,5
	P.19 P.19 P.19	7	35.78 36.07 36.44 36.49 37.11 37.28 37.28 37.28		Dented		80 88 10	60	8				6,134 6,064 1,276 36,060 36,060 36,060 36,060	15EE			40.0 40.0	0.36 7.31 8.82 15,34 8.30 8.30		0.30 7,21 0.32 11,02		10 10 10	
Ē			27,7% 36,13 28,40 28,40		Denied	2223				11111111111111111111111111111111111111	12 No	ESERTIME SECTION OF SE	12.000 2.000 11.040 27.114			2222	48.0 341.0 341.0 84.0	1.30 0.14 1.12 7.63				4	1912 814 111 413 1471 1917
Ē	P.17 P.17 P.17 P.17		26.11 28.40 28.40 29.16 29.16 28.45 28.45 28.45 28.45 28.75 28.75		Dismittel Dismittel Astal Dismittel Astal Dismittel	64. 16 78	61 61	- 11	41 30	NEA 8,7 NEA 8,7 NEA	144A 643 146A	3333	22,846 15,814 11,864 6,308	Vala Vala Vala Vala			94.0 91.0 94.0 94.0	431 431 340 310	500	8,14 7,31 4,59 4,15		14 14	1967 943 148 148
Ē			- <u>318</u>		Dervetel Add Derverel	ы		80	28	146A 0.0 146A 146A	44 44 55	3333	7,018 8,408 14,140 18,664						1.0	EG C	+	14 16 16 16	36.1 65.3 76.8 191.2
	5.15 5.15 5.15 5.15 5.15 6.15 6.15 6.15		34,30 34,30 34,40,40 34,40 34,40 34,40,400 34,40 34,40 34,40 34,40000000000			- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	-	- M	- 40		14 MA 04 04	1888 1	21,800 17,400 26,850 12,440	288 288 288				6.11 6.11 7.80	1.44 1.44 1.49 1.49	0.41 0.50 0.44 1.70		16 16 18 19	116.3 167.4 150.4 87.7 32.1
	P.19	Ħ	77.22 37.447		Dervited Derveted Derveted	85 98 46 43	80 80 80			-	ij		1,700 1,700 7,600 1,000	Vida Vida Vida			223		1 13	1/6 0.87 1.85 1.64			-
	PATH PATH PATH PATH PATH		20.00 50.00 50.00 60.00 60.00			43		40 20 40	23 73	MAN NO T	NMA 8.7 NMA NMA	100	191616 201772 84446 191494	Video Video		日間の	10 11 11		6.64 1/2 6.49				1743 1944 94.1
Ē	PLTH PLTH PLTH		41.8 9.8 0.8		Darvetal Darvetal	m z n z n				NA NA	14 14 14	28 6 6 F	12-874 30,164 16-830 23-858	Vide Vide Vide		2 2 2	2223	8.05 8.05 8.41 8.45	148 548 148 148	「「「「「「「」」」		*	1764 198,1 864 128,0 U/J
Ē		9	949 949 439 439					8 8 8	24 20	STATE OF STATE	10 10 10	10000000000000000000000000000000000000	12.134 12.134 13.431	EEEEEEEEEEEEEEEEEEEEEEEEEEEE		の日本の		14 19 14 63		構成	-	-	1
Ē	111		22255555555555555555555555555555555555		111					198A	1 14	22 E	時間	致轻			2223	13	100	調		-	101
Ē			100			5 2 8 2				111	1 W			233		2 2 2 2	41.0 41.0 41.0 41.0	3555555	138				
Ē	2222		440 440 450			24 22 28 26 26				FIELEE	10 10 10	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	E E E E E			3405	41.0 41.0 41.0 41.0	13	100		1	1	SCO.EC
Ē	619 619 619		10.0 40.0 10.0 10.0			40 70 66 38	10 10 10			1951	2012222	SEE.	E SEE	E E			60.0 90.0 90.0 90.0		1.00			3 3 3 2	80 81 864
	PLTU PLTU		96.25 96.72 91.40 91.18 91.18		Denveral Denveral Denveral Addi	10 11 11	8 8	#0	н	N6A N6A 514	14 64 54 54	A REFER	8178 41.882 5.388 5.784 5.784 5.784	Videl Videl Videl		1899 1899 1891	114 114	177 1148 5.82 3.99	100			*	211 2013 2013 2013 2013 2014
Ē	AU AU AU		41,21 11,82 11		Add Damated Add Damated Damated	19 20 20 20 20		- 40		· · · · · · · · · · · · · · · · · · ·	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	253E	9.762 4.035 54.54 24.659 25.659 25.659	強要		1960 1980 1980	414 414 813 813	4.11 3.04 4.01 4.00		140		9 9 9 9	
Ē			52.45 52.45 53.11 53.12 53.25			80		<u>60</u> 61	19 41		10 Mm 10 505	28328823828888888888888888888888888888	75.652 11.471 2.378 12.498 5.148	26366665363686666		YAN MANANA MA	119 114 144 144	10 10 10 10 10 10 10 10 10 10 10 10 10 1	120 940 120 120			14 14 14	111.4 193.4 29.4 29.4
Ē	ATH		100 100		Deneted Decement Addi Decrement		- 8	60	и		12			Value		2903	86.8		1.00	100		N 14	
Ē	ATT		10		A R R R R R R R R R R R R R R R R R R R					1111	1000	3333		1000			413 413 411			SECRETE CERTER CO		9 9 9	
Ē	1000		P#0 P#0 #20 #20		Arts Deneral Deneral Dynamics	-	-		-49	THE S	10	EE EE	1000	222		9414 3920 3920			1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,00	100			- SUSSEE
Ē	000		94.0 94.0 95.0 95.0		Artist Artist Descent	a B	#0 10	60 60	29	20.5525552555			E E E E E E E E E E					2222	1.00			1	a rise and
Ē								80 80 81	28 30 41	H N	19973	*****	播	KEREEEEEEEEEEEEEEEEEEEEEEEEEEE				1000	1	1995		-	100 1100
F			62.6 62.6 92.70 92.70 92.70 92.70 92.80		Denetri Denetri Add Denetri Add Denetri	n B g	92 10	49 80	42	194 5.7	Norsenia .	Yele Yele		Viet I			85.0 18.5	2933933		SECOND SCIENCE		94 98	CONTRACT CONTRACT

Axial Valid	5	Axial Valid	K	140
Point Load Test Type Failure Validity	CGOR 140 BH21- RV-05 PLT222.9m	Point Load Test Type Failure Validity	CG09140 8421-RV-05 PLT 4(3.9)	Undermining PLTs CG09140 February 2022
Point Load TestPLT 2Depth (m)2.90	CGAOR 140 BH21- RV-05 PLT 222.9m	Point Load TestPLT 4Depth (m)3.90	CG09140 BH21-RV-05 PLT 4(3.9.)	Resort Village Phase 1 Undermining PLTs BH21-RV-05
Point Load Test TypeDiametralFailure ValidityValid	CGOR 140 BHZI- RV- 05 PLT 162.8m	Point Load Test TypeDiametralFailure ValidityValid	CGOR 140 BH21- RV-05 PLT 3 (3.2m)	CLIENT:
Point Load TestPLT 1Depth (m)2.80	CGD9140 BH21-RV OS PLT 122.8m	Point Load TestPLT 3Depth (m)3.20	CG09 140 BH21- RV- 05 PLT 3 (3.2m)	

 ∞

							ي، ا
Axial	Valid	S	Diametral Invalid	LA T		140	^{y zuzz} 2 of 58
Test Type	dity	CG109143 8421-RV-05 PLT 6(4.1m)	Test Type dity	CGORIAO BHZI-RV-OS PLT 8(4.55-)	ng PLTs	CG09140	repruary 2022
Point Load Test Type	Failure Validity	P P P P P P P P P P P P P P P P P P P	Point Load Test Type Failure Validity	40	Resort Village Phase 1 Undermining PLTs		
					hase 1 L	-05	
PLT 6	4.10	CG109170 8421-RV-05 PLT 6(4.1m)	PLT 8 4.55	CGO9140 BHZI-RV-05 PLT 8(4.55m)	/illage F	BH21-RV-05	
Point Load Test	(E	CG09170 8421-RV-0 PLT 6(4.1m)	Point Load Test Depth (m)	CGOQIAO BHZI-RV-OS PLT 8(4.55m	Resort V	H21	
Point L	Depth (m)		Point Load Depth (m)			n d	
Diametral	/alid					C	_
Type Diametral	Valid	140 740 740 7 7 7 7 7 7 7 7	Axial Valid	S S S		village	-
\mapsto		CGOR 140 BHZI- RV- 05 PLT S(40-)	Axial Valid	509 140 H21- RV- 05 -T 7 (445-1)		untain village	
Point Load Test Type Diametral	Failure Validity Valid	CGORITO BH21-RV-OS PLT S(4.0m)		CG09 (40 BH2L- RV-05 PLT 7 (445-1)	:LIENT:	mere sisters mountain village	
\mapsto			Axial Valid	CGORIAO BHZI-RV-OS PLTZ (445-1)	CLIENT:	mere sisters mountain village	
\mapsto			Axial Valid		CLIENT:	mere sisters mountain village	
PLT 5 Point Load Test Type	4.00 Failure Validity		PLT 7 Point Load Test Type Axial 4.45 Failure Validity Valid		CLIENT:	THRE SISTERS mountain village	
Point Load Test Type	Failure Validity		Point Load Test Type Axial Failure Validity Valid	Caratto Caratto Buzi-RV-05 PLT 7 (445.1) PLT 7 (445.1)	CLIENT:	THRE SISTERS mountain village	

			ral		and and the second		
Axial	Valid	v (Diametral	Valid			140 y 2022
Point Load Test Type	Failure Validity	CGORIAO SHZI-RV-OS PLT IO(4.75)	Point Load Test Type	Failure Validity	Cáoglao Bhzi-RV-oS PLT I2 (5:3m)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022
PLT 10	4.75	S (S S S S S S S S S S S S S S S S S S	PLT 12	5.30	No Solo	ge Phase 1	W-05
Point Load Test	Depth (m)	CGORIAO SHZI-RV-OS PLT IO (4.75m)	Point Load Test	Depth (m)	CGORIAO SHZI-RV-OS PLT 12 (S. 3m)	Resort Villa	BH21-RV-05
Diametral	Valid		Diametral	Valid			age
Point Load Test Type	Failure Validity	CGORIAC SHZI-RV-05 PLT9 (4.65m)	Point Load Test Type	Failure Validity	CGORIAO BHZI-RV-OS PLT II(S.2m)	CLIENT:	itainvill
PLT 9	4.65	0 (22) (22)	PLT 11	5.20			
Point Load Test	Depth (m)	CGORIAO SHZI-RV-OS PLT9 (4.65m)	Point Load Test	Depth (m)		5	

					200
Axial	Valid	S.	Diametral	B) S S S S S S S S S S S S S S S S S S S	4 of 58
Point Load Test Type	Failure Validity	CGORIAO SHZI-RV-OS PLT 14(s:5m)	Point Load Test Type	SH21-RV-os SH21-RV-os PLT 16 (5.7 m) BLT 16 (5.7 m) PLT 16 (5.7 m) PLT 16 (5.7 m) Record to the second t	-
PLT 14	5.50	0 2 () 2 ()	PLT 16	S.7 m) S.7 m) S.7 m) S.7 m) S.7 m) S.7 m) S.7 m) S.7 m)	
Point Load Test	Depth (m)	CGORIAO SHZI-RV-OS PLT 14(S.Sm)	Point Load Test	CGGA140 SH21-RV-05 PLT 16 (5.7 m) Resort Village Phase BH21-RV-05	
Axial	Valid	S	Diametral	See as	-
Point Load Test Type	Failure Validity	CGOGIAO SHZI-RV-OS PLT 13(5.35m)	Point Load Test Type	CGORIAO SHZI-RV-OS PLT IS(r.6.1) PLT IS(r.6.1) CLENT CLENT	
PLT 13	5.35	V E	PLT 15		
		CGORIAO SHZI-RV-05 PLT 13(5.35m)	Point Load Test	CGORIAO SHZI-RV-OS PLT IS(S.6m)	

Diametral	Valid	V E	Axial	Valid		I	140	2022
Point Load Test Type	Failure Validity	CGOAIAO SHZI-RV- 05 PLT 18 (A.2 m)	Point Load Test Type	Failure Validity	CGORIAO SHZI-RV-OS PLT ZOG 7.4m	Resort Village Phase 1 Undermining PLTs	CG09140	February 2022
PLT 18	7.20	502	PLT 20	7.40	0 2 4 4 1 4	ge Phase	20-V	
Point Load Test	Depth (m)	CGOGIAC SHZI-RV-05 PLT 18 (3.2 m)	Point Load Test	Depth (m)	CGORIAO SHZI-RV-OS PLT 206 7.4m	Resort Villa	RH71-RV-05	TTTTT
Diametral	Invalid	5.5	Diametral	Valid	VE		ge	
Point Load Test Type	Failure Validity	CGORIAO SHZI-RV-OS PLTI7(7.05m)	Point Load Test Type	Failure Validity	CGORIAC BHZI-RV-05 PLT 19(3.3m)	CLIENT:	THREE SISTERS mountain village	
PLT 17	7.05	S.S.	PLT 19	7.30	S II			
Point Load Test	Depth (m)	C409140 5421-RV-05 PLT17(3.05m)	Point Load Test	Depth (m)	CGOGIAO SHZI-RV-OS PLT 19(3.3m)	511		

Failure Validity Valid Depth (m) 7.80 Failure Validity Ealure Validity Valid BHZ1-RV-OS ELT Z2 CAS-1 ELT Z2 CAS-1 Ealure Validity Valid Point Load Test Type Diametral Point Load Test Type Ealure Validity Valid Point Load Test Type Diametral Point Load Test Type Ealure Validity Valid Point Load Test Type Diametral Point Load Test Type Ealure Validity Valid Bepth (m) 8.00 Ealure Validity	Point Load Test	PLT 21	Point Load Test Type	Axial	Point Load Test	PLT 22	Point Load Test Type	Diametral
Cácha Carla C		7.70	Failure Validity	Valid	Depth (m)	7.80	Failure Validity	Valid
Cóchiaco H2L-RV-OS IT ZIC ZIA-I IT ZIC ZIC ZIA-I IT ZIC ZIC ZIA-I IT ZIC ZIC ZIC ZIA-I IT ZIC ZIC ZIC ZIC ZIA-I IT ZIC ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ILIT ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ZIC ZIC ILIT ZIC ZIC ZIC ZIC ZIC ZIC ZIC ZIC ILIT ZIC								
HZL-RV-OS BHZL-RV-OS BHZL-RV-OS BHZL-RV-OS IT Zue zam PLT Zue zam PLT Zue zam PLT Zue zam IT Zue zam PLT Zue zam PLT Zue zam PLT Zue zam IT Zue zam PLT Zue zam PLT Zue zam PLT Zue zam It Zue zam Point Load Test Type Planetral Point Load Test Type I Test PLIZ Point Load Test Type Planetral Point Load Test Type I Test PLIZ Point Load Test Type Diametral Point Load Test Type I Test PLIZ Plue Validity Valid Depth (m) 8.00 I Test PLIZ PLIZ Plue Validity Plue Validity Plue Validity I Test PLIZ Plue Validity Depth (m) 8.00 8.00 8.00 Value Planetral Point Load Test Type Diametral Planetral Planetral Planetral Value Planetral Point Load Test Type Diametral Planetral Planetral Value Planetral Point Load Test Type Diametral Planetral Valuetral Planetral	6409140		CEORIAO		CGORIA	0	6404140	F
IT Zie Zian PLT Zie Zian PLT Zie Zian I Taie Zie Zian Internetion Internetion Internetion I Taip PLI Zi Point Load Test Type Diametral I Taip PLI Zian Point Load Test Type Point Load Test Type I Taip Point Load Test Type Diametral Point Load Test Type I Taip Point Load Test Type Point Load Test Type Point Load Test Type I Taip Point Load Test Type Diametral Point Load Test Type I Taip Point Load Test Type Diametral Point Load Test Type I Taip Point Load Test Type Diametral Point Load Test Type I Taip Point Load Test Type Diametral Point Load Test Type I Taip Point Load Test Type Diametral Point Load Test Type I Taip Point Load Test Type Diametral Point Load Test Type I Taip Point Load Test Type Diametral Point Load Test Type I Taip Point Load Test Type Diametral Point Load Test Type I Taip Point Load Test Type Diametral Point Load Test Type I I I Taip Point Load Test Type Point Load Test Type Point Load Test Type	-VA-12H	So			BHZI-RV.	50	BHZI-RV-C	50
PLT23 Point Load Test Type Diametral Point Load Test Type 7.30 Falure Validity Valid Point Load Test Type 7.30 Falure Validity Name Boot 7.30 Falure Validity Boot Ealure Validity 7.30 Falure Validity But Load Test Type Ealure Validity 7.30 Ealure Validity But Load Test Type Ealure Validity 7.30 Ealure Validity Ealure Validity Ealure Validity	ר שוב דו	mt	PLT ZIC 7.4	-	PLT 22 (3.8	-	PLT 22 (3.8~	
PLT 23 Point Load Test Type Diametral 7.90 Faiure Validity Valid 7.90 Faiure Validity Valid 7.90 Faiure Validity Valid 7.90 Faiure Validity Point Load Test Type 7.90 Faiure Validity Valid 7.90 Faiure Validity Point Load Test Type 7.90 Faiure Validity Valid 7.90 Faiure Validity Point Load Test Type 7.90 Faiure Validity Point Coold Action 7.90 Point Load Test Type Point Coold Action 7.90 Point Coold Action Point Coold Action <tr< th=""><th></th><th></th><th>ł</th><th></th><th></th><th></th><th></th><th></th></tr<>			ł					
Image: state				V		a de minuelos		A LANGE
Image: Test PLT 23 Point Load Test Type Diametral Point Load Test Type Point Load Test Type 7.30 Failure Validity Valid Depth (m) 8.00 Failure Validity 7.31 Failure Validity Valid Depth (m) 8.00 Failure Validity 1.32 Failure Validity Valid Depth (m) 8.00 Failure Validity 1.33 Failure Validity Print 23 Canadity Failure Validity Failure Validity 1.33 Failure Validity Print 24 (8.0-1) Failure Validity 1.33 Failure Validity Print 24 (8.0-1) Print 24 (8.0-1) 1.33 Print 23 Canadity Print 24 (8.0-1) Print 24 (8.0-1) 1.33 Print 23 Canadity Print 24 (8.0-1) Print 24 (8.0-1) 1.33 Print 23 Canadity Print 24 (8.0-1) Print 24 (8.0-1) 1.33 Print 23 Canadity Print 24 (8.0-1) Print 24 (8.0-1) 1.33 Print 23 Canadity Print 24 (8.0-1) Print 24 (8.0-1) 1.33 Print 23 Canadity Print 24 (8.0-1) Print 24 (8.0-1) 1.33 Print 20 Print 2								
7.90 Failure Validity Valid Depth (m) B.00 Failure Validity 7.91 Failure Validity Valid Depth (m) B.00 Failure Validity 7.91 Failure Validity Valid Depth (m) B.00 Failure Validity 7.91 Failure Validity Valid Depth (m) B.00 Failure Validity 7.91 Failure Validity Valid Failure Validity B.121-RV-OS 7.91 March (M) B.121-RV-OS CO01 7.91 March (M) B.121-RV-OS CO01 7.91 March (M) B.121-RV-OS Fahruary (M)	d Test	PLT 23	Point Load Test Type	Diametral	Point Load Test	PLT 24	Point Load Test Type	Diametral
Image: Second		7.90	Failure Validity	Valid	Depth (m)	8.00	Failure Validity	Valid
Solution CLORITION CLORIT								
Substant CLORIDO SH21-RV-OS SH21-RV-OS SH21-RV-OS PLT 23(39A) PLT 24(8.0A) PLT 24(7.0A) PLT 24(7.0A) Image Plane Image Plane Image Plane PLT 24(7.0A) Image Plane Image Plane Image Plane Image Plane Image Plane Image Plane Image Plane Image Plane	Charles and the second	f				F	- An	F
CLENT CLENT CLENT Resort Village Phase 1 Undermining Image State	CGOGIAS	0	C40914C	NO NO	540912	9	C40914	u 0 0
Image: Single Singl		C 2	PLT 22/39"		PHZI-KV	60	PIT CAL	<u> </u>
Image: Second	1-27 59 1-	7			111 24(8.0	(
Image: Signal								
Resort Village Phase 1 Undermining I BH21-RV-05							······································	New Bulling
Resort Village Phase 1 Undermining I BH21-RV-05								
Sisters Suntain village Suntain village BH21-RV-05			CLIENT:					
lage BH21-RV-05	/				Resort Villa	ge Phase 1	Undermining PLTs	
CO-1717110			THREE SISTERS mountainvilla	de		11.05	CGO	9140
				,	N-17UQ		Februai	y 2022

6 of 58

Diametral Valid	N T	Diametral Valid	N M		140
Point Load Test Type Failure Validity	CGORIAO BHZI-RV-OS PLTZKC8.3m	Point Load Test Type Failure Validity	CGGIAO BHZI-RV-OS PLT28(8.6m)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022
PLT 26 8.20	40 V. OS V. OS	PLT 28 8.60	00 2	ge Phase '	20-V5
Point Load Test Depth (m)	CGORIAO BHZI-RV-OS PLT-26 (8.2m)	Point Load Test Depth (m)	6409140 6421-RV-05 PLT28(8.6.m)	Resort Villa	BH21-RV-05
Diametral Valid	N E	Diametral Valid	NE		ge
Point Load Test Type Failure Validity	CGORIAO BHZI-RV-OS PLT 25(8.05m)	Point Load Test Type Failure Validity	CGORIAO BHZI-RV-OS PLT 23(9.35m)	CLIENT:	THREE SISTERS mountain village
PLT 25 8.05	02 (i)) (i) (PLT 27 8.35	S in S		
Point Load Test Depth (m)	C409140 6421-RV-05 PLT 25(8.05m)	Point Load Test Depth (m)	6421-RV-05 8421-RV-05 PLT 27(8.35m)	511	

Diametral	Valid		Diametral Valid			140 2022 0 - £ 60
Point Load Test Type	Failure Validity	C409140 6421-RV-05 PLT 30(890m)	Point Load Test Type Failure Validity	6409140 6421-RV-05 PLT 32(1.45m)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022
PLT 30 Pc	8.90 Fa	N T	PLT 32 Pc 9.45 Fa		Phase 1 Un	7-05
Point Load Test P	Depth (m)	CGORIAO BHZI-RV-OS PLT 30(8:90m)	Point Load Test F Depth (m)	CGORIAO BHZI-RV-OS PLT 32(9.45m)	Resort Village	BH21-RV-05
Diametral	Valid	N S	Diametral Valid	Kall		g
Point Load Test Type	Failure Validity	CGORIAO BHZI-RV-O PLT 29(9.35	Point Load Test Type Failure Validity	6409140 5421-RV-05 PLT 31(4.35m)	CLIENT:	meet sisters mountain village
PLT 29	8.75	S T	PLT 31 9.35	2 ° C		
Point Load Test	Depth (m)	6409140 6421-RV-05 PLT 29(8.75)	Point Load Test Depth (m)	CGORIAO BHZI-RV-OS PLT 31(9.35m)	5	

Axial	Invalid	N T W	Axial	2022
Point Load Test Type	Failure Validity	C409146 C409146 BH21-RV-OS PLT 34(10.0m)	Point Load Test Type	CGORI40 CGORI40 BH21-RV-OS PLT St (10.15m) PLT
Point L	Failure		Point L	Cudern Cudern
PLT 34	10.00	40 20 20 20 20 20 20 20 20 20 20 20 20 20	PLT 36	rest of the second seco
Point Load Test	Depth (m)	C409140 BH21-RV-05 PLT 34 (10.0m)	Point Load Test	CGORIAO BH2I-RV-OS PLT St (10.15m) Resort Village Phase BH21-RV-05
_	Ď			
Diametral	Valid	No.	Diametral	
Point Load Test Type	Failure Validity	CG09140 BH21-RV-0 PLT 33(9.9m)	Point Load Test Type Failure Validity	CLIENT: CLIENT
PLT 33	9.80	2 ° C	PLT 35	
Point Load Test	Depth (m)	C409140 BH21-RV-05 PLT 33(9.9m)	Point Load Test	CGORIAO BHZI-RV-OS PLT 35(101m)

			ភ្		10 of 58
Axial	Valid	N Z	Diametral Valid	N 7	140 7 2022 1 0 0
Point Load Test Type	Failure Validity	C409140 BH21-RV-05 PLT 38 (10.65m)	Point Load Test Type Failure Validity	CGO9140 BHZI-RV- OS PLT 40(ILPM)	Resort Village Phase 1 Undermining PLTs CG09140 SH21-RV-05 February 2022
PLT 38	10.65	20-1-29	PLT 40 11.00	000	ge Phase
Point Load Test	Depth (m)	C4.091.40 BH21-RV-05 PLT38(10.65~)	Point Load Test Depth (m)	C409140 6421-RV-05 PLT 40(110m)	Resort Village Phase BH21-RV-05
Axial	Valid	S	Diametral Valid	E CO	ge B
/pe				\$ 10	
Point Load Test Type	Failure Validity	CG09140 BH21-RV-OS PLT 37(10.55.)	Point Load Test Type Failure Validity	CGORI40 BH21-RV-0 PLT39(10.8m	cLENT:
PLT 37 Point Load Test Ty	10.55 Failure Validity	Chontao Chontao BH21-RV-OS PLT 37(10:55-)	PLT 39 Point Load Test Type 10.80 Failure Validity	CGO9140 BH21-RV-OS PLT 39(10.8m)	CLIENT:

/pe Diametral	Valid		/pe Diametral Valid		S	CG09140 February 2022
Point Load Test Type	Failure Validity	CGORIAO BHZI-RV-OS PLT ALCIIIS	Point Load Test Type Failure Validity	CGORI40 BHZI-RV-OS PLT 44(II.a.	Resort Village Phase 1 Undermining PLTs	Let (
PLT 42	11.30	N S S S S S S S S S S S S S S S S S S S	PLT 44 11.90	400 E	ige Phase 1	2V-05
Point Load Test	Depth (m)	CGORI46 BH21-RV-OS PLT 42(11.3m)	Point Load Test Depth (m)	CGO9140 BH21-RV- OS PLT 44(11.9.	Resort Villa	BH21-RV-05
Axial	Valid		Diametral Valid			ge
Point Load Test Type	Failure Validity	CGO9140 BH21-RV-OS PLT 41(III)	Point Load Test Type Failure Validity	CG09140 BH21-RV-05 PLT 43(11.64	CLIENT:	mountainvillage
PLT 41	11.10	E o to	PLT 43 11.60	40 - 05 (1:6.)		
Point Load Test	Depth (m)	CGORI40 BH21-RV-OS PLT 41(III)	Point Load Test Depth (m)	C409140 6421-RV-OS PLT 43(11.6.)	511	

					·		,		8
Axial	Valid	000 (1) (1)	Diametral	Valid	× c		140	y 2022	12 of 58
Point Load Test Type	Failure Validity	CGO9140 BH21-RV-OS PLT 46(12.1m)	Point Load Test Type	Failure Validity	CGO9140 BHZI-RV-OS PLT ABCILLES)	Resort Village Phase 1 Undermining PLTs	CG09140	February 2022	
PLT 46	12.10	2 C C C C C C C C C C C C C C C C C C C	PLT 48	12.25	140 V-05 25-05	age Phase 1	2V-05		
Point Load Test	Depth (m)	C409140 C409140 BH21-RV-05 PLT 46(12.1)	Point Load Test	Depth (m)	CGO9140 BHZI-RV-OS PLT 48(1225-)	Resort Vill	RH71-RV-05		
Axial	Invalid		Diametral	Valid			ge		
Point Load Test Type	Failure Validity	Choquado BH21-RV-OS PLT 45(12.055	Point Load Test Type	Failure Validity	CGORI40 BH21-RV-OS PLT43(12.15m)	CLIENT:	THREE SISTERS mountain village		
PLT 45	12.05	0 0 0 0 C	PLT 47	12.15	N. I. S.				
Point Load Test	Depth (m)	CGO9140 BH21-RV-OS PLT 45(12.05-)	Point Load Test	Depth (m)	C409140 BH21-RV-00 PLT47(12.15m)	511			

						(
Diametral	Valid	S T	Diametral Valid	with a		2022
Point Load Test Type	Failure Validity	CGORI40 BHZI-RV-OS PLT SO(12.6m)	Point Load Test Type Failure Validity	C409146 BH21-RV-05 PLT 52(13.05.	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022
PLT 50	12.60	P S T	PLT 52 13.05	20 S	ge Phase	2V-05
Point Load Test	Depth (m)	CLOBIAO BHZI-RV-OS PLT SOCI26m)	Point Load Test Depth (m)	CG09140 BH21-RV-OS PLT 52(13.05~)	Resort Villa	BH21-RV-05
Diametral	Valid	VE	Diametral Valid			ge
Point Load Test Type	Failure Validity	CG09140 BH21-RV-05 PLT 49(12.45~)	Point Load Test Type Failure Validity	CGORI40 BHZI-EV-05 PLT SIL(12-11)	CLIENT:	THREE SISTERS mountain village
PLT 49	12.45	SE	PLT 51 12.70	S S F		
Point Load Test	Depth (m)	CG09140 BHZI-RV-OS PLT 49(12.45m)	Point Load Test Depth (m)	CGO9140 BHZI-RV-OS PLT SICIZAN	5	

					∞	2
Diametral	Valid				y 2022	
Point Load Test Type	Failure Validity	CG09140 BH21-RV-05 7LT 54(13,95m)		Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 54	13.85	Y E		ige Phase	KV-05	
Point Load Test	Depth (m)	Choquado BH21-RV-OS FLT SA(13.35m)		Resort Villa	BH21-RV-05	
Diametral	Valid	S C C C C C C C C C C C C C C C C C C C	Diametral		မ္မာ	
Point Load Test Type	Failure Validity	C409140 BH21-RV-0 TLT 53(13.4-	Point Load Test Type Failure Validity	CLIENT:	THREE SISTERS mountain villa	
PLT 53	13.40	No Contraction	PLT 55 15.25			
Point Load Test	Depth (m)	CG09140 CG09140 BHZI-RV-05 FLT 53(13.4-)	Point Load Test Pl Depth (m) 1 Depth (m) 1			

140	CG09140 February 2022	BH21-RV-06	BH21	ge	THREE SISTERS		
	Resort Village Phase 1 Undermining PLTs	illage Phase	Resort V		CLIENT:	õ	511
	BH21- RV- 06	45=)	BHZI-RV-06 PLT 4(9.45=)		BHZI-RV-06 PLT 3 (8.15 m)	BHZI-RV-C	
Axial Valid	Point Load Test Type Failure Validity	PLT 4 9.45	Point Load Test Depth (m)	Axial Valid	Point Load Test Type Failure Validity	PLT 3 8.15	Point Load Test Depth (m)
5x40	C409140 BH21-RV-0 PLT 2(8.0-1)		C409140 BH21-RV-06 PLT 2(8.0)		CGORIAO BHZI-RU-06 PLT 1(7.5-)		C409140 BHZI-RU-06 PLT 1(3.85-)
Valid	Failure Validity	8.00	Depth (m)	Valid	Failure Validity	7.85	
			L OILIN LOAN LESI				Depth (m)

_							<u> </u>
Axial	Invalid		Axial	Invalid			140 2022 16 of 58
Point Load Test Type	Failure Validity	C409140 BH21-RV-06 RLT6(965-)	Point Load Test Type	Failure Validity	C409140 BHZI-RV-0 PLT8(9-3-	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022
PLT 6	9.65	000	PLT 8	9.75	04140 04-06 04-11	llage Phase 1	BH21-RV-06
Point Load Test	Depth (m)	CGOGIAO BHZI-RV-OG RTGCAGSS	Point Load Test	Depth (m)	CG09140 BHZI-RV-06 PLT8(9.75-)	Resort Vi	BH21-
Diametral	Valid		Axial	Invalid			ge
Point Load Test Type	Failure Validity	CGORIAD BH21-RW-OG PLT SCASS	Point Load Test Type	Failure Validity	CGOQIAO BH21-RU-O RT 7(97.)	CLIENT:	mere sisters mountain village
۲5 ۲	55		r 7	02		0	
PLT 5	9.55	(m351	PLT 7	9.70	1140		
Point Load Test	Depth (m)	CLAORIAD BHZI-RU-06 RLT SCA.SSm)	Point Load Test	Depth (m)	CLORINO BHZI-RU-OG PLT F(9-1)	5	

								_	20
Axial	Valid		Axial	Valid			140	2022	17 of 58
Point Load Test Type	Failure Validity	CGORIAO BHZI-RV-O6 PLT IO(ILOST)	Point Load Test Type	Failure Validity	CGOGIAO BHZI-RV-OG PLT IZCIZ-355	Resort Village Phase 1 Undermining PLTs	CG09140	February 2022	
PLT 10	11.05	000	PLT 12	12.75	001	ige Phase	20 110		-
Point Load Test	Depth (m)	CGO9140 BHZI-RV-06 PLT 10(11.05-1)	Point Load Test	Depth (m)	CGOGIAO BH2I-RV-06 PLT 12(12.75%	Resort Villa	JO VIG 1CLIG	J-17110	
Axial	Valid		Diametral	Valid			de	_	
Point Load Test Type	Failure Validity	CGOGIAO BHZI-RV-OG PLT 9(10.65m)	Point Load Test Type	Failure Validity	CGOGIAO BHZI-RV-OG PLTII(1255-	CLIENT:	THREE SISTERS mountain village		
PLT 9	10.65		PLT 11	12.55					
Point Load Test	Depth (m)	CLOGIAO BHZI-RV-OG PLT 9(10.65m)	Point Load Test	Depth (m)	C409140 BHZI-RV-06 PLT II(12 55-	5			

Axial	Valid		Diametral Valid		140 2022 18 of 58
Point Load Test Type	Failure Validity	C409128 BH21-EV-0 PLT 14 (12.4-)	Point Load Test Type Failure Validity	CLAOHIZE BHZI-RV-06 PLT 16(12.855)	Resort Village Phase 1 Undermining PLTs CG09140 SH2 1 - RV-06 February 2022
PLT 14	12.40	200	PLT 16 12.85	T C	ige Phase 2V-06
Point Load Test	Depth (m)	CGC9128 BHZI-RV-00 PLT 14(12.4)	Point Load Test Depth (m)	2409128 8421-RV-06 PLT 16(12.85)	Resort Village Phase BH21-RV-06
Diametral	Valid		Axial Valid		ge
Point Load Test Type	Failure Validity	CG09140 BH21-RV-0 PLT 13(12.9m)	Point Load Test Type Failure Validity	CGOGIZS BHZI-EV-OC PLT IS(12.55m)	CLIENT:
PLT 13	12.90		PLT 15 12.55		
Point Load Test	Depth (m)	C409140 BH21-RV-06 PLT 13(12.9m)	Point Load Test Depth (m)	CGOAI28 BH2I-RV-06 PLT IS(12.55m)	5

_							∞
Diametral	Valid		Diametral Valid			140 2022	19 of 58
Point Load Test Type	Failure Validity	C409128 BH21-RV-0 PLT 18(13.35m)	Point Load Test Type Failure Validity	CGOQILS BH21-RV-06 PLT 20(1425m	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 18	13.35		PLT 20 14.25	8	ge Phase 1	90 - 7	
Point Load Test	Depth (m)	C409128 BH21-RV-06 PLT 18(13.35m)	Point Load Test Depth (m)	CGOQIZS BH21-RV-O6 PLT 20(14.25m	Resort Villa	BH21-RV-06	
Diametral	Valid		Diametral Valid			ge	
Point Load Test Type	Failure Validity	CGOAIZS BH2I-RV-06 PLT17(13.2m)	Point Load Test Type Failure Validity	C409128 BH21-RV-06 PLT 19(13 41)	CLIENT:	mere sisters mountain village	
PLT 17	13.20	3 2	PLT 19 13.90	i i i i i i i i i i i i i i i i i i i			
Point Load Test	Depth (m)	CGORIZS BHZI-RV-06 PLT1A(13.2m)	Point Load Test Depth (m)	C409128 BH21-RV-0 RLT 19(13.9m)	5		

Diametral	Invalid		Axial Valid		2022
Point Load Test Type	Failure Validity	CGOGIZS BHZI-RV-O6 PLT 22(14.8m)	Point Load Test Type Failure Validity	CGOGIZS BH21-RV-06 PLT 24(15.45-)	Resort Village Phase 1 Undermining PLTs CG09140 SH21-RV-06 February 2022
PLT 22	14.80	8 2 0 0	PLT 24 15.45	42	age Phase RV-06
Point Load Test	Depth (m)	C409128 BH21-RV-06 PLT 22(14.8.1)	Point Load Test Depth (m)	CG09128 BH21-RV-06 PLT 24(15.45)	Resort Village Phase BH21-RV-06
Diametral	Valid	6 3	Diametral Valid	10 E	
Point Load Test Type	Failure Validity	CG09128, BH21-RV-06 PLT 21 (14.4m)	Point Load Test Type Failure Validity	CGOQILS BHZI-RV-06 PLT 23(IS.0m	cLIENT:
PLT 21	14.40		PLT 23 15.00		
Point Load Test	Depth (m)	CG09128 CG09128 BH21-RV-06 PLT 21 (14.4m)	Point Load Test Depth (m)	C409128 BH21-RV-06 PLT 23(15.0m)	5

t Type Diametral	CG09140 H21-RV-06 T 26(15:35-1	tt Type Diametral Valid	CG09140 BH21-RV-06 PLT28(16.5m)	PLTs CG09140 Eabruary 2022
Point Load Test Type Failure Validity	CGOQIA BHZI-RV PLT Z6C1	Point Load Test Type Failure Validity	BHZ	Resort Village Phase 1 Undermining PLTs 3H21-RV-06
PLT 26 15.75	90-15 0-15	PLT 28 16.50	007	age Phase V-06
Point Load Test Depth (m)	CGO9140 BHZI-RV-06 PLT Z6CIS-354	Point Load Test Depth (m)	CG09140 BH21-RV-0 PLT28(16.5~)	Resort Village Phase BH21-RV-06
Axial Invalid		Diametral Valid	1	e B
Point Load Test Type Failure Validity	CGOGILE BHZI-RV-O6 PLT 25(IS.S.	Point Load Test Type Failure Validity	CG09140 BH21-RV-06 PLT 27-(16.25)	CLIENT:
PLT 25 15.50		PLT 27 16.25	0.01	
Point Load Test Depth (m)	CGO9128 BH21-RV-06 PLT 25(15.5-1)	Point Load Test Depth (m)	C609140 BH21-RV-06 PLT 27 (16.25m)	511

				×
Diametral	Valid		Diametral	
Point Load Test Type	Failure Validity	CG09140 BH21-RV-0 PLT 30(168m)	Point Load Test Type Failure Validity	CGONAO CGONAO PLT32CLASS PLT32CLASS PLT32CLASS CG09140 PLD1-RV-06 CG09140 Pebruary 2022 February 2022
PLT 30	16.80		PLT 32	SV-06
Point Load Test	Depth (m)	CG09140 BHZI-RV-06 PLT 30(168m)	Point Load Test	Resort Village Phase BH21-RV-06 PLT-32Cl3-3-5 BH21-RV-06
Axial	Valid		Diametral	See
Point Load Test Type	Failure Validity	CGOGIAO BHZI-RV-06 PLT 29(16.65-)	Point Load Test Type Failure Validity	CGOQIAO BHZI-RV-O6 PLT 31 (L131m) PLT 31 (L131m) PLT 31 (L131m) PLT 31 (L131m)
PLT 29	16.65	87	PLT 31 17.10	
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 29(16.65~)	Point Load Test Depth (m)	CGOGIAO BHZI-RV-06 PLT3I (13.1m)

t Type	alidity Valid	CGO9140 BH21-RV-06 PLT 34(18.0m)	t Type	alidity Valid	CGO9140 EH21-RV-06 PLT 36(18.7m)	ining PLTs	CG09140	February 2022	23 of 58
Point Lo	Failure Validity	8. 2	Point Lo	Failure Validity		Resort Village Phase 1 Undermining PLTs			
PLT 34	18.00	40	PLT 36	18.70	007	age Phase	20 110	00-12	
Point Load Test	Depth (m)	CGORI40 BHZI-RV-06 PLT 34CIS.0-)	Point Load Test	Depth (m)	CG09140 BH21-RV-0 PLT 36(18.7m)	Resort Vill	YU ICHIQ	-17UG	
Diametral	Valid		Axial	Valid	000		lage	,	
Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT33(IT33(IT40	Point Load Test Type	Failure Validity	CGO9140 BHZI-RV-06 PLT 35(19.65	CLIENT:	atain vil		
PLT 33	17.75	000	PLT 35	18.65					
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT33(17-5-10)	Point Load Test	Depth (m)	CGO9140 BH21-RV-06 PLT 35(19.65m)	5			

				-		201
Diametral	Valid		Axial	Invalid	06	24 of 58
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 38(19.1m)	Point Load Test Type	Failure Validity	CG 09140 CG 09140 BH21-RV-06 BH21-RV-06 PLT 40(195-1) PLT 40(195-1) PLT 40(195-1) PLT 40(195-1) Resort Vilage Phase 1 Undermining PLTs CG0140 SH21-RV-06 February 2022	
Point	Failu		Point	Failu	Unde	
PLT 38	19.10	0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	PLT 40	19.55	ss-) ss-) ge Phase 1 XV-06	
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 38(19.1m)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 40(1955-) Resort Village Phase BH21-RV-06	
Axial	Valid		Diametral	Valid	ge en	
Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 37(1895-	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 39(19.45m) PLT 39(19.45m)	
PLT 37	18.95	2	PLT 39	19.45		
		CG09140 BH21-RV-06 PLT 37(1895)	Point Load Test		CG 09140 BH21-RV-06 PLT 39(19.45m)	

								8
Diametral	Valid	26	Diametral	Invalid	27		140 2022	25 of 58
Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 42(20.4m)	Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT44(209-)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 42	20.40		PLT 44	20.90	40 V-06 209mJ	ge Phase	90-V	
Point Load Test	Depth (m)	CG 09140 BH21-RV- 06 PLT 42(20.4m)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 44(2094)	Resort Villa	BH21-RV-06	
Diametral	Valid	5 ° 6	Axial	Valid	37		ge	
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-0 PLT 41(201m)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 43(2056-)	CLIENT:	mee sisters mountain village	
PLT 41	20.10		PLT 43	20.55	500	0		
Point Load Test	Depth (m)	CG 09140 BH21-RV- 06 PLT 41 (201m)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 43(20.55-)	5		

					8
Diametral	Valid	S C C	Axial	Invalid	26 of 58
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 46 (31.35.)	Point Load Test Type	Failure Validity	CGOTIAO CGOTIAO RH2L-RV-OG RH2L-RV-OG PLT 48 (ar.8.) PLT 48 (ar.8.) PLT 48 (ar.8.) PLT 48 (ar.8.) Recort Vilage Phase 1 Underming PLT CG09140 SH21-RV-OG CG09140 SH21-RV-OG February 2022
PLT 46	21.35	32.00	PLT 48	21.80	40 1.8.) age Phase 2V-06
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 46 (al.35)	Point Load Test	Depth (m)	CG OT 140 BH21-RV-06 PLT 48 (a.8.) Resort Village Phase BH21-RV-06
Axial	Valid	ST.	Axial	Valid	ge age
Point Load Test Type	Failure Validity	CG 09140 BH21-RV- 06 PLT 45 (31.3.)	Point Load Test Type	Failure Validity	CG 09 140 BH21-RV-00 PLT 47 (31.6) PLT 47 (31.6) CLENT: CLENT:
PLT 45	21.30	000	PLT 47	21.60	
Point Load Test	Depth (m)	CG 09140 BH21-RV- 06 PLT 45 (31.3.)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 47 (31.6.)

							00
Axial	Invalid	30	Diametral Valid	9 E		140 2022	27 of 58
Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 50(22.2m)	Point Load Test Type Failure Validity	CG 09140 BH2L-RV-06 PLT 52 (22 SSM)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 50	22.20	40 1-06 2.2m)	PLT 52 22.55	y it	ge Phase	90-V	
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 50(22.2m)	Point Load Test Depth (m)	CG 09140 BH21-R1-06 PLT52(22.55m)	Resort Villa	BH21-RV-06	
					1		
Axial	Valid	1.0	Diametral Valid	V T		ge	
Point Load Test Type Axia	Failure Validity Valid	CG 09140 BH21-RV-06 PLT 419 (21.85)	Point Load Test TypeDiametralFailure ValidityValid	CG 09140 BH21-RV-06 PLT 51 (22.4 m)	CLIENT:	THREE SISTERS mountain village	
		CG 09140 CG 09140 BH21-RV-06 PLT 49 (21.85.)		CG 09140 BH21-RV-06 PLT SI (22.4 m)	CLIENT:	THREE SISTERS mountain village	

						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Axial	Invalid		Axial Valid	3 2		140 / 2022 28 of 58
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 54(23:2-)	Point Load Test Type Failure Validity	CG 09140 BH21-RV-06 PLT 56(23.65m)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022
PLT 54	23.20	0 T 0	PLT 56 23.65	90-1	ige Phase	8V-06
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 54(23:27)	Point Load Test Depth (m)	CG 09140 BH21-RV-06 PLT 56(23.65m)	Resort Villa	BH21-RV-06
Diametral	Valid		Diametral Valid	o F	-	о С С
Point Load Test Type	Failure Validity	C409140 BH21-RV-06 PLT 53(23.1m)	Point Load Test Type Failure Validity	CG 09140 BH21-RV- 0 PLT SSC234	CLIENT:	mere sisters mountain village
PLT 53	23.10	2	PLT 55 23.40	o î î	70	
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 53(23.1m)	Point Load Test Depth (m)	CG 09140 BH21-RV-06 PLT SSC234-1	511	

Point Load Test TypeDiametralFailure ValidityValid	CG 09140 BH21-RV-06 PLT 58(244m)	Point Load Test TypeDiametralFailure ValidityValid	CG 09140 BH21-RV-06 PLT 60(25.3m)	ermining PLTs	CG09140 February 2022	29 of 58
PLT 58 24.40	CG 09140 BH21-RV-06 PLT 58(244m)	PLT 60 25.30	CG 09140 BH21-RV-06 PLT 60(25.3m)	Resort Village Phase 1 Undermining PLTs	BH21-RV-06	
DiametralPoint Load TestValidDepth (m)		AxialPoint Load TestValidDepth (m)		Res		
Point Load Test Type Failure Validity	CG 09140 BH21-RV-06 PLT 57(24.05-1)	Point Load Test Type Failure Validity	CG 09140 BH21-RV-06 PLT S9(24.95m)	CLIENT:	THREE SISTERS mountain village	
Point Load TestPLT 57Depth (m)24.05	CG 09140 BH21-RV-06 PLT 57(24.05m)	Point Load Test PLT 59 Depth (m) 24.45	CG09140 BH21-RV-06 PLT S9(24.46)			

Diametral			Diametral					30 of 58
Diam	Valid	3 6	Diam	Valid	0 2 2		CG09140 February 2022	30
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 62(25.7m)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 64(2655m)	Resort Village Phase 1 Undermining PLTs	CG0	
PLT 62	25.70		PLT 64	26.55	90 ( in 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1900 - 1	age Phase	RV-06	
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 62(257m)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 64(2655m)	Resort Vill	BH21-RV-06	
Axial	Invalid	41)06	Diametral	Valid	0 ( in 2		ge	
Point Load Test Type	Failure Validity	CG 09140 BH21-RV- C PLT 61 (25:41)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 63(26.05m)	CLIENT:	mer sisters mountain village	
PLT 61	25.40	00 7	PLT 63	26.05	No Contraction			
Point Load Test		CG 09140 BH21-RV-06 PLT 61 (25.4~)	Point Load Test		C409140 BH21-RV-06 PLT 63(26.05m)	5		

							1 1		58
Diametral	Valid	200	Axial	Valid	26		140	2022	31 of 58
Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 67(2715m)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 69(27.65)	Resort Village Phase 1 Undermining PLTs	CG09140	February 2022	
PLT 67	27.15	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PLT 69	27.65	00000	ge Phase	90-M		
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 67(27.15m)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 69(27.65)	Resort Villa	RH71_RV_06	NI-17110	
Diametral	Valid	20	Axial	Invalid	200		ge		
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-0 PLT 65(26.9~)	Point Load Test Type	Failure Validity	CG09140 BH21-RV-0 PLT 68(23-25)	CLIENT:	THREE SISTERS mountain village		
PLT 65	26.90	9 (	PLT 68	27.25	25)				
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 65(26.9~)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 68(23-25)	5			

Point Load Test Type Diametral	09140 RV- 0 1 (28·1m)	Point Load Test Type Diametral	alidity Valid	CG 09140 BH21-RV-06 PLT 33(23.0)	ning PLTs	CG09140	February 2022
Point Load Tes		Point Loa	Failure Validity		1 Undermi		
PLT 71		PLT 73	29.00	0000	ge Phase 1	20 110	
Point Load Test	CG 09140 BH21-RV-06 PLT 71(28.1m)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 73(27.0)	Resort Village Phase 1 Undermining PLTs		1-1711C
Diametral		Diametral	Valid	202	_	llage	
Point Load Test Type	CG 09140 BH21-RV-06 PLT 70(23.34Ca)	Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 72(28 8-1	CLIENT:	atain vi	
PLT 70		PLT 72	28.80	001			
Point Load Test Denth (m)	CG 09140 BH21-RV-06 PLT 30223765	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 72(288-1)	511		

32 of 58

Point Load Test Depth (m)	PLT 74 29.40	Point Load Test Type Failure Validity	Axial Valid	Point Load Test Depth (m)	PLT 75 29.55	Point Load Test Type Failure Validity	Diametral Valid
CG 09140 BH21-RV-06 PLT 74(29.4m)	4 . 66	CG09140 BH21-RV-06 PLT 74(29.4.1)	25	CG 09140 BH21-RV-06 PLT 75(29.55m)	4.55m)	CG 09140 BH21-RV-06 PLT 75(29.55m)	9 (im 3 )
Point Load Test Depth (m)	PLT 76 29.65	Point Load Test Type Failure Validity	Axial Valid	Point Load Test Depth (m)	PLT 77 29.75	Point Load Test Type Failure Validity	Diametral Valid
CG 09140 BH21-RV-06 PLT 76(21.65m)	90 - 0 90 - 0	CG09140 BH21-RV-06 PLT76(2055	5.0	CG 09140 BH21-RV-06 PLT 37(29.75m)	0000	CG 09140 BH21-RV-06 PLT 77(21.75.	22
511		client:		Resort Village Phase BH21-RV-06	ge Phase	Resort Village Phase 1 Undermining PLTs SH2 1-RV-06 February 2022	2022

				- 20
Axial Invalid	4 m)	Diametral	140	34 of 58
Point Load Test Type Failure Validity	CG 09140 BH21-RV-06 PLT 39(31.4m)	Point Load Test Type	CG 09140 BH21-RV-06 PLT 81(33.46.) PLT 81(33.46.) RH21-RV-06 Resort Village Phase 1 Undermining PLT BH21-RV-06 February 2022	
PLT 79 31 40		PLT 81	40 40 3.46 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 ) 3.46 3	
Point Load Test	CG 09140 BH21-RV-06 PLT 31(31.4m)	Point Load Test	Resort Village Phase BH21-RV-06 PLT 81(33.46.)	
Diametral Valid		Axial	ge de la constante	
Point Load Test Type Failure Validity	29140 - RV- 8 (31.3	Point Load Test Type	0.31. 0.31.	
PLT 78 31.30		PLT 80		
Point Load Test Depth (m)	CG 09140 BH21-RV-06 PLT 78 (31.3m)	Point Load Test	CG 09140 BH21-RV-06 PLT 80(31.35)	

								_	<u>م</u>
Diametral	Invalid		Diametral	Valid	S S S S S S S S S S S S S S S S S S S		140	2022	35 of 58
Point Load Test Type	Failure Validity	CG 09140 BH2L-RV-06 PLT 83(33.6-)	Point Load Test Type	Failure Validity	CG09140 CG09140 BH21-RV-06 PLT 85(340-)	Resort Village Phase 1 Undermining PLTs	CG09140	February 2022	
PLT 83	33.60	36-1)	PLT 85	34.00	01 00	ge Phase	20 110	00-1	
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 83(33.6m)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 85(340-)	Resort Villa		<b>N-17110</b>	
Axial	Valid	5 E)	Diametral	Invalid			de		
Point Load Test Type	Failure Validity	CG 09140 BH21-RV- 0 PLT 82(33.5	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-0 PLT 94(33.7-	CLIENT:	THREE SISTERS mountain village		
PLT 82	33.50	9 É 0 U M	PLT 84	33.70	40 1-06 3.7m)				
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 82(33.5m)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 84(33.7m)	5			

								8
Diametral	Invalid	200	Axial	Valid	20		140 / 2022	36 of 58
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 87(34.45m)	Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 89(34.85-	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 87	34.45	40 V- 06 1 45m]	PLT 89	34.85	4.85-1	ge Phase	90-V	
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 87(34 45-1)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 89(34.85~)	Resort Villa	BH21-RV-06	
Diametral	Valid	9 E	Diametral	Valid	S C C		ge	
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 86(34.3m)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV- PLT 88734 8.	CLIENT:	mere sisters mountain village	
PLT 86	34.30	De la construcción de la constru	PLT 88	34.80		5		
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 86(34.3m)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT88(34.8m)	511		

Cád 01140     Cád 0	Point Load Test Depth (m)	PLT 90 35.05	Point Load Test Type Failure Validity	Diametral Valid	Point Load Test Depth (m)	PLT 91 36.60	Point Load Test Type Failure Validity	Diametral Invalid
PLT 92     Point Load Test Type     Diametral     Point Load Test Type       37.00     Failure Validity     Invalid     Depth (m)     37.20     Failure Validity       7.100     Failure Validity     Invalid     Depth (m)     37.20     Failure Validity       7.100     Failure Validity     Invalid     Depth (m)     37.20     Failure Validity       7.100     Failure Validity     Invalid     Depth (m)     37.20     Failure Validity       7.100     Failure Validity     Invalid     Bepth (m)     37.20     Failure Validity       7.100     Failure Validity     Invalid     Bepth (m)     37.20     Failure Validity       7.100     Failure Validity     Invalid     BH21-RV-06     BH21-RV-06     BH21-RV-06       7.100     Fabruary 2     Infatige Phase 1 Undermining PLTs     Coold     Coold	CG 0914 BH21-RV- PLT 90(35	0000	CG 09140 BH21-RV-0 PLT 90(35.0	See .	CG 091 BH21-R PLT 91 (3	40 4-06 6.6m)	CG 09140 BH21-RV- PLT 91 (36.6	000
Classifie       Classifie         Classifie       Clastron         Classifie	int Load Test pth (m)	PLT 92 37.00	Point Load Test Type Failure Validity	Diametral Invalid	Point Load Test Depth (m)	PLT 93 37.20	Point Load Test Type Failure Validity	Diametral Valid
Resort Village Phase 1 Undermining BH21-RV-06 BH21-RV-06	CG091. BH21-RI PLT 92(3	7.006	CG 09140 BH21-RV- PLT 92(33.0	100	CG 0914 BH21-RV- PLT 93(33	00 2	CG 0914 BH21-RV- PLT 93 (37-	00 2
BH21-RV-06	5		CLIENT:		Resort Villaç	ge Phase	1 Undermining PLTs	
			mer sisters mountain villa	ge	BH21-R	V-06	CG09	40 2022

Diametral	Valid	100	Diametral	Invalid	2 F		140 / 2022 28 of 58
Point Load Test Type	alidity	CG.09140 BH21-RV-06 PLT 95(33.8-)	Point Load Test Type	alidity	CG 09140 BH21-RV-06 PLT 97(38 55-)	ning PLTs	CG09140 February 2022
Point Loa	Failure Validity		Point Loa	Failure Validity		1 Undermi	
PLT 95	37.80	04 04 08 08 08 08 08 08 08 08 08 08 08 08 08	PLT 97	38.55	40 40 6 6 6 6 6 6 6 6 6 6 6 6 6	age Phase	RV-06
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 95(37.8-)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 97(33 55m)	Resort Village Phase 1 Undermining PLTs	BH21-RV-06
Diametral	Valid	100	Diametral	Valid			e B B
Point Load Test Type	Failure Validity	CG09140 BH21-RV- PLT94(33.43	Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 96(38.0m)	CLIENT:	THREE SISTERS mountain village
PLT 94	37.45	400	PLT 96	38.00	9 ( ) 0 ( )	0	
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 94(33.45~1	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 96(38.0m)	5	

_									58
Diametral	Invalid		Diametral	Valid			140	2022	39 of 58
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 99(33-SS=)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 101 (40.0.)	Resort Village Phase 1 Undermining PLTs	CG09140	February 2022	
PLT 99	39.55	40	PLT 101	40.00	40	age Phase	90 / A	00-1	
Point Load Test	Depth (m)	CGO9140 BH21-RV-06 PLT 99(39.55-)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT101(40.0m)	Resort Vill	AU1 BV 06	[-1711A	
Diametral	Valid	06	Axial	Valid	40 (		oge		
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 98(3715-)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-0 PLT 100(39.8	CLIENT:	stain vill		
PLT 98	39.15	000000000000000000000000000000000000000	PLT 100	39.85	9 (i 9 0 0 9 0 1 0 9 0				
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 98(3915-)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 100(39.85-)	511			

e Axial Invalid	32%)	e Axial	Valid	9140       RV-06       SC415-       PLTs       CG09140       February 2022
Point Load Test Type Failure Validity	CG 09140 BH21-RV-06 PLT 103(40.35m)	Point Load Test Type	Failure Validity	CG 09140       CG 09140         BH21-RV-06       BH21-RV-06         PLT 105 C4115-1       PLT 105 C4115-1         PLT 105 C4115-1       CG 09140         BH21-RV-06       CG 09140         BH21-RV-06       CG 09140         BH21-RV-06       February 202
PLT 103 40.35	0.32	PLT 105	41.15	40 40 40 40 40 8 RV-06
Point Load Test Depth (m)	CG 09140 BH21-RV-06 PLT 103(40.35m)	Point Load Test	Depth (m)	CGG9140 BH21-RV-06 PLT 105 C4115-1 Resort Village Phase BH21-RV-06
Axial Valid	90	Axial	Invalid	
Point Load Test Type Failure Validity	CG 09140 BH21-RV-06 PLT 102 (40.2)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 104(409.1)
PLT 102 40.20	40 1-06 40.21)	PLT 104	40.90	
Point Load Test Depth (m)	CG 09140 BH21-RV-06 PLT 102 (40.2.)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 104(409m)

40 of 58

CG 09140 BH21-RV-06	C2.14			Double (m)	01.07	Failure Validite.	1/2121
CG 09140 BH21-RV-0			Valid	Depth (m)	42.50	Failure Validity	Valid
CG 09140 BH21-RV-0		at the second state					
	9	CG09140 BH21-RV-06		CG09140 BH21-RV-06	00	CG09140 BH21-RV-06	
1-1100(41:25-)		PLT 106 (41.25-)		PLT 107 (42.5m)	(u.	PLT 107(42.54)	
			Į.,		P		
Point Load Test P	PLT 108	Point Load Test Type	Diametral	Point Load Test	PLT 109	Point Load Test Type	Diametral
Depth (m)	42.90	Failure Validity	Valid	Depth (m)	42.65	Failure Validity	Valid
		62.09140		·el			ſ
CG09140 BH21-RV-06	06	BH21-RV-06	6	CG 09140 BH21-RV-06	90	CG09140	90
PLT 105(42.9-)	۲.) ۲.)	ru 108(42.4.		PLT 109 (42.65~)	(	PLT 109 (42.65-	(-5
			ļ				
	1		1		• •		
5	0	CLIENT:		Resort Vill	age Phase '	Resort Village Phase 1 Undermining PLTs	
		ntain vill	ade		20170	CG	CG09140
				I-17110		Februa	February 2022

								8
Axial	Valid		Diametral	Valid			140 2022	42 of 58
Point Load Test Type	Failure Validity	CG09140 BH21-RV- 06 PLT III (43:3)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV- 06 PLT113(43:85-)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 111	43.30	400 4-06 3-3-3-	PLT 113	43.85	40	lage Phase	RV-06	
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT III (43:3-)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT113(43-85-)	Resort Vil	BH21-RV-06	
Diametral	Valid		Axial	Valid	200		ge	
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-0 PLT 110 (43.0m)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 112(43.75m	CLIENT:	mere sisters mountain village	
PLT 110	43.00	No Contraction of the second s	PLT 112	43.75	000			
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 110 (43.0m)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 112(43.755	511		

								8
Diametral	Valid	2	Diametral	Valid			140 / 2022	43 of 58
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 115(41741)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 117-(45-4-1	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 115	44.70	0°	PLT 117	45.40	0000	age Phase 1	RV-06	
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 115(417-1)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 117 (454-)	Resort Vill	BH21-RV-06	
Diametral	Valid		Diametral	Valid	ji č		ge	3
Point Load Test Type	Failure Validity	CG 09 140 BH21-RV-06 PLT 114 (44.40 m)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 116(44.95-)	CLIENT:	mere sisters mountain village	
PLT 114	44.40	O E C	PLT 116	44.95	20 C C C C C C C C C C C C C C C C C C C			
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 114 (44.40 m)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 116(44.95-)	511		

								8
Diametral	Valid		Diametral	Valid			140 / 2022	44 of 58
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 119(45.9)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 121 (47.6m)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 119	45.90		PLT 121	47.60	140 140 (14) -06	lage Phase	RV-06	
Point Load Test	Depth (m)	CG.09140 BH21-RV-06 PLT 119(459)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 121 (43.6m)	Resort Vill	BH21-RV-06	
Diametral	Invalid		Diametral	Valid			ge	
Point Load Test Type	Failure Validity	CG 09 140 BH21-RV-06 PLT 118(45.65m)	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 120(46.4-1	CLIENT:	mer sisters mountain village	
PLT 118	45.65	140 21-06 45.65m)	PLT 120	46.40	400			
Point Load Test	Depth (m)	CG 09140 BH21-RV- 06 PLT 118(45.65m)	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 120(464-)	5		

									8
Diametral	Valid		Diametral	Valid			140	2022	45 of 58
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 123(4x356)	Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 125(487+)	Resort Village Phase 1 Undermining PLTs	CG09140	February 2022	
PLT 123	48.35 F			48.70 F		hase 1 U	90		
PLT	48	40 40	PLT 125	48	140 140 14:5 1	lage F	Ma		
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 123(4x 35-	Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 125(487-1)	Resort Vi	AN UN ICHA	-17110	
Diametral	Valid	0 ° °	Diametral	Valid	200		ge		
Point Load Test Type	Failure Validity	CG 09140 BH21-RV- 0 BLT 122 (48.	Point Load Test Type	Failure Validity	CG 09140 BH21-RV-0 PLT 124(48	CLIENT:	THREE SISTERS mountain village		
PLT 122	48.00	18.01)	PLT 124	48.50	9 ( · · · · · · · · · · · · · · · · · ·				
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 122 (480-)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 124(4854)	511			

							28
Diametral	Valid		Diametral Valid			140 / 2022	46 of 58
Point Load Test Type	Failure Validity	CGO9140 BH21-RV-06 PLT 127 (413)	Point Load Test Type Failure Validity	Choq140 BH21-RV-06 PLT 129(50.0-)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 127	49.30	13%	PLT 129 50.00	041 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-1 0-	age Phase	RV-06	
Point Load Test	Depth (m)	Caogl40 BH21-RV-06 PLT 127 (41.3m)	Point Load Test Depth (m)	CGORIAO BH21-RV-OG PLT 129(50.0-1)	Resort Vill	BH21-RV-06	
Diametral	Valid	20°6	Diametral Valid			ge	×
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 126(4185-	Point Load Test Type Failure Validity	Caoglyo BH21-RV-06 PLT 128(49.55-	CLIENT:	mere sisters mountain village	
PLT 126	48.85	CG 09140 BH21-RV-06 PLT 126(4885-)	PLT 128 49.55	000			
Point Load Test		CG 09140 H21-RV- 0 LT 126(488	Point Load Test Depth (m)	Ca 09140 BH21-RV-06 PLT 125(4955-1	5		

							X
Diametral	Valid		Diametral	Valid			140 2022 47 of 58
Point Load Test Type	Failure Validity	Ch 09140 BH21-RV-06 PLT 131 (So.7)	Point Load Test Type	Failure Validity	Choq140 BH21-RV-06 PLT 133(51.15m)	mining PLTs	CG09140 February 2022
Point I	Failure		Point I	Failure		Under	
PLT 131	50.70	00 (H 00)	PLT 133	51.15	40 06 06	Resort Village Phase 1 Undermining PLTs	RV-06
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 131 (SO.74)	Point Load Test	Depth (m)	Cá 09 140 BH21-RV-06 PLT 133 (SI. IS)	Resort Vill	BH21-RV-06
Diametral	Valid		Diametral	Valid			g
Point Load Test Type	Failure Validity	C4.09140 BH21-RV-06 PLT 130(50:355	Point Load Test Type	Failure Validity	Choq140 BH21-RV-06 PLT 132(51.04)	client:	THREE SISTERS mountain village
PLT 130	50.35	32 - 06	PLT 132	51.00			
Point Load Test	Depth (m)	Ca 09140 BH21-RV-06 PLT 130(50.35m)	Point Load Test	Depth (m)	Cánglao BH2L-RV-OG PLT 132(SIOn)	511	

Diametral Valid		Diametral	Valid				)22 40 5 50
Point Load Test Type C	CGOQIAO BH21-RV-CG PLT 135(51.5m)	Point Load Test Type	Failure Validity	Chaquad BH21-RV-CK PLT 137(5195m)	Resort Village Phase 1 Undermining PLTs	CG09140	February 2022
PLT 135 51.50	40 06 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 	PLT 137	51.95	40	age Phase 1 (	RV-06	
Point Load Test Depth (m)	Caoglao BH21-RV-C6 PLT 135(S1.S-)	Point Load Test	Depth (m)	CGORIAO BHZI - RV-OG PLT 137(51.95m)	Resort Vill	BH21-RV-06	
Axial Valid	2 E	Axial	Valid	100 to 100		ge	
Point Load Test Type Failure Validity	CGORIAO BH21-RV-06 PLT 134(SI:25m)	Point Load Test Type	Failure Validity	CGOGIAO BH21-RV-CG PLT 136(SI.8-)	CLIENT:	mountain village	
					Ĕ		-
PLT 134 51.25	Ch 09140 BH21-RV-06 PLT 134(SI:25m)	PLT 136	51.80	CG 09140 BH21 - RV - 06 PLT 136(S1.8-)			

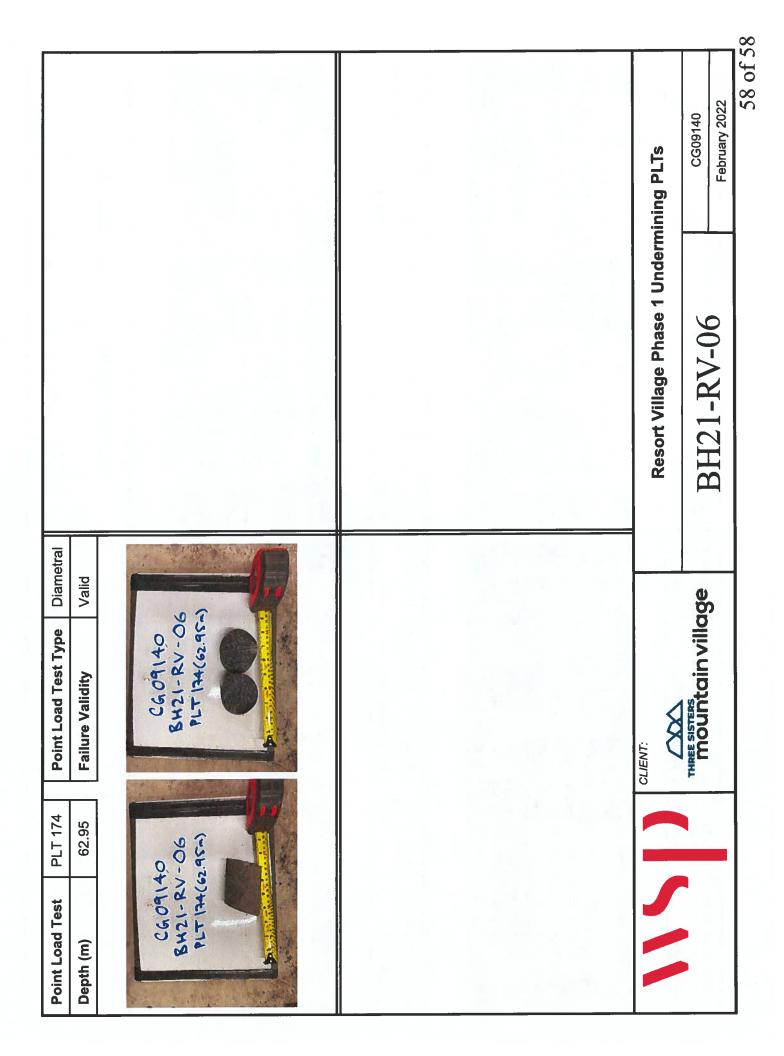
48 of 58

									00
Diametral	Valid	SE	Diametral	Valid			140	, 2022	49 of 58
Point Load Test Type	idity	CG09140 BH21-RV-06 PLT 139(5245m)	Point Load Test Type	idity	CG09140 BH21-RV-06 PLT 141(53.1m)	ing PLTs	CG09140	February 2022	
Point Load	Failure Validity	BHT	Point Load	Failure Validity	BH2 BH2	Undermin			
PLT 139	52.45	the second	PLT 141	53.10	100	Resort Village Phase 1 Undermining PLTs	20 110	00-1	
Point Load Test	m)	CG09140 BH21-RV-06 PLT 139(5245m)	Point Load Test	n) (n	CG.09140 BH21-RV-06 PLT 141(52.1m)	esort Villa		<b>U-1711</b>	
Point Lo	Depth (m)	22	Point Lo	Depth (m)	22	Ř	ם	q	
Diametral	Valid		Axial	Valid	5 E		de	<u> </u>	
est Type	ity	C409140 BH21-RV-06 PLT 138(523	est Type	ity	CG09140 BH21-RV-C PLT 140(52.5		ainvilla		
Point Load Test Type	Failure Validity	BH2 PLT	Point Load Test Type	Failure Validity	BH2 BH2	CLIENT:	THREE SISTERS mountain village		
PLT 138	52.30		PLT 140	52.55		СТИ	Ŧ		
PLT	52	(523	PLT	52	1140				
Point Load Test	(m)	CGO9140 BH21-RV-06 PLT 138(523-)	Point Load Test	(m)	CG 09140 BH21-RV-06 PLT 140(52.55m)				
Point L	Depth (m)		Point L	Depth (m)					

Diametral	Valid		Diametral	Valid			0	022	50 of 58
Point Load Test Type	Failure Validity	CG07140 BH21-RV-06 PLT 143(533m)	Point Load Test Type	Failure Validity	CG.09140 EH21-RV-06 PLT 145(54.35m)	Resort Village Phase 1 Undermining PLTs	CG09140	February 2022	
PLT 143	53.30	334)	PLT 145	54.35	40	age Phase 1	20 / VC		
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 143(533m)	Point Load Test	Depth (m)	CGO9140 EH21-RV-06 PLT 145(54.35m	Resort Vill		-17UG	
Axial	Valid	40 -06 325)	Diametral	Invalid	0 - 06 335m)	-	llage	<b>.</b>	
Point Load Test Type	Failure Validity	CG.09140 8421-RV-06 PLT 142(5325)	Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 144(53.35m)	CLIENT:	stain vi		
PLT 142	53.25	40	PLT 144	53.85	900 1000 1000				
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 142(5325.)	Point Load Test	Depth (m)	CG.09140 8421-RV-06 PLT 144(53:35m	511			

							$\infty$
Diametral Invalid	S.I.	Diametral	Invalid	27		140	51 of 58
Point Load Test Type Failure Validity	CG09140 BH21-RV-06 PLT 147(54.7m)	Point Load Test Type	Failure Validity	CG.09140 BH21-RV-06 PLT 149(549-)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 147 54.70	40 	PLT 149	54.90	40 (-06 (-06 (-06	age Phase	RV-06	
Point Load Test Depth (m)	CG09140 BH21-RV-06 PLT 147(54.7m)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 149(5494)	Resort Vill	BH21-RV-06	
Axial Valid	06 (m)	Diametral	Invalid	27		g	
Point Load Test Type Failure Validity	CG 09140 BH21-RV-06 PLT 146 (54.6m)	Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 148(S434)	CLIENT:	mere sisters mountain village	
PLT 146 54.60	4.6m) 4.6m)	PLT 148	54.80	0 ( - 0 C C C C C C C C C C C C C C C C C C			
Point Load Test Depth (m)	CG09140 BH21-RV-06 PLT 146(59.6m)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 148(543m)	5		

								0
Diametral	Valid	6	Diametral	Valid	35)		140	^{, 2022} 52 of 58
Point Load Test Type	Failure Validity	CG091400 BH21-RV-06 PLT 151 (55.9m)	Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 153(56.3m)	Resort Village Phase 1 Undermining PLTs	CG09140	February 2022
P P	Fa		Po	Fa		1 Un		
PLT 151	55.90	55. 4m	PLT 153	56.30	40	lage Phase	RV-06	
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 151 (55.9m)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 153(56.3m)	Resort Vill	RH71_RV_06	
Diametral	Valid	0.000	Axial	Invalid	23		age	
Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 150(55-4-)	Point Load Test Type	Failure Validity	CG09140 BH21-RV-06 PLT 152(5624)	CLIENT:	tainvill	
			2			C	-	
PLT 150	55.40	40 1-06	PLT 152	56.20	CG09140 2421-RV-06 PLT 152(562-)			
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT ISO(55-4-)	Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 152(56.2	511		


Diametral Valid	No.	Diametral Valid	RV-06 RV-06 (	140
Point Load Test Type Failure Validity	CGOGIAO BH2I-RV-OG PLT ISF(S723)	Point Load Test Type Failure Validity	CG 09140 BH21-RV-06 PLT 157: (57:5m)	Resort Village Phase 1 Undermining PLTs SH2 1-RV-06 Eehman 2022
PLT 155 57.20	04 90- 100 100 100 100 100 100 100 100 100 1	PLT 157 57.50	00-00	age Phase 1 RV-06
Point Load Test Depth (m)	CG09140 BH21-RV-06 PLT ISS(57.2m)	Point Load Test Depth (m)	CGO9140 BH21-RV-06 PLT 157(57.54)	Resort Village Phase BH21-RV-06
Diametral Valid	200	Axial Valid	35-1)	ge ge
Point Load Test Type Failure Validity	CGOPI40 BH21-RV-06 PLT ISACS. BS.	Point Load Test Type Failure Validity	CG09140 BH21-RV-06 PLT IS6(53.355)	clent:
PLT 154 56.85	- 06	PLT 156 57.35	335.)	
Point Load Test Depth (m)	CG09140 BH21-RV-OG PLT ISACS& SSEA	Point Load Test Depth (m)	CG.09140 BH21-RV-06 PLT ISC(57355)	511

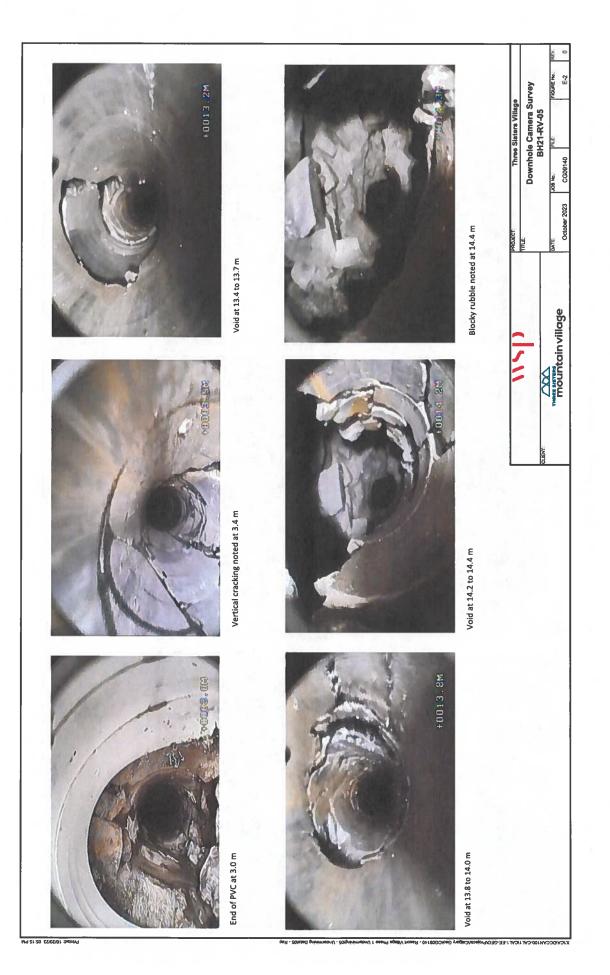
					<u>∞</u>
Diametral Valid	J J	Axial Valid	21		¹⁴⁰ 2022 54 of 58
Point Load Test Type Failure Validity	CG09140 BH21-RV-06 PLT159(58:7m)	Point Load Test Type Failure Validity	CGORIAO BH21-RV-OG PLT IGI(SPISSM)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022
PLT 159 58.70	90-15 00-15	PLT 161 58.85	40 V-06 STRYEN	age Phase	RV-06
Point Load Test Depth (m)	CG09140 BH21-RV-06 PLT159(587m)	Point Load Test Depth (m)	CG.09140 BH21-RV-06 PLT 161 (STRM)	Resort Vill	BH21-RV-06
Diametral Valid		Axial Valid	1) Q 20 0 20 0		ğ
Point Load Test Type Failure Validity	CGORIAO BHZI-RV-OG PLT ISS(SS.3m)	Point Load Test Type Failure Validity	CG 09140 BH21-RV-06 PLT 160(58.8.)	client:	mer sisters mountain village
PLT 158 58.30	90 ( L	PLT 160 58.80	9 (1		
Point Load Test Depth (m)	CG.09140 BH21-RV-06 PLT 158(583m)	Point Load Test Depth (m)	CG 09140 BH21-RV-06 PLT 160(58.8m)	J	

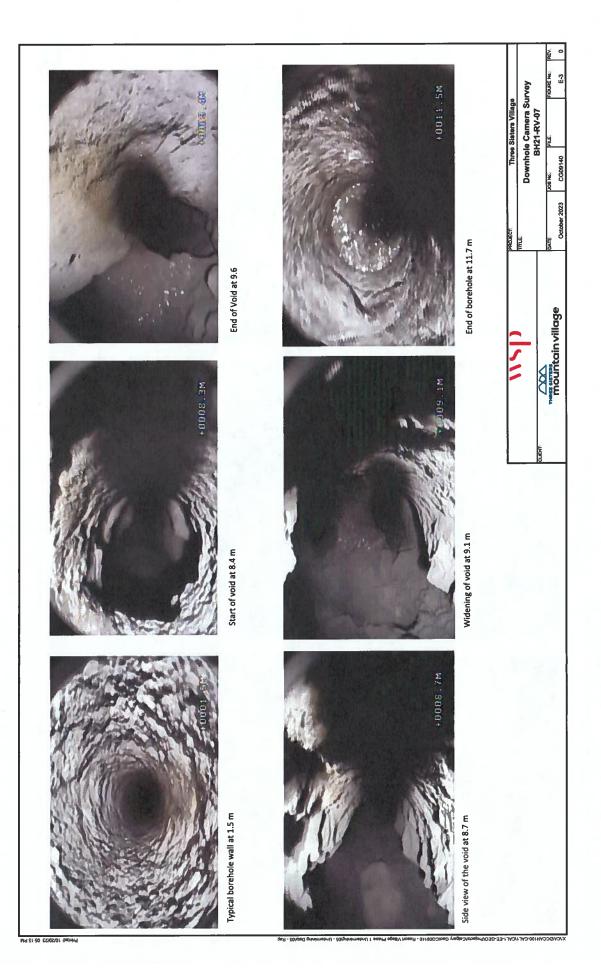
			, , ,			58
Diametral	Valid	2 2	Axial	Valid	35-) 35-) 140 2022	55 of 58
Test Type	idity	CG09140 BH21-RV-06 PLT 163(59.35m)	Test Type	idity	CGOQ140 BW21-RV-OG PLT I65(60.355) Ining PLTs CG09140 February 2022	
Point Load Test Type	Failure Validity	BH2 BH2	Point Load Test Type	Failure Validity	Undermin	
PLT 163	59.35	1 32 0 0 0 0 0 0 0 0 0	PLT 165	60.35	CGORIAO CGORIAO RH21-RV-OG PLT (65(60.35%) PLT (65(60.35%) Resort Village Phase 1 Undermining PLTs BH21-RV-06 Februa	
		CG 09140 BH21-RV-06 PLT 163(59.35m)		(	CGOPIAO BH21-RV-OG PLT 165(60.35m) Resort Village Phase BH21-RV-06	
Point Load Test	Depth (m)		Point Load Test	Depth (m)	BH	
Diametral	Valid	25.1	Axial	Valid	ge ge ge	
est Type	ity	CG09140 BH21-RV-06 PLT162(59.25m)	est Type	ity	CGORIAO BH2I-RV-OG PLT 164(60.3m)	
Point Load Test Type	Failure Validity	RH3C	Point Load Test Type	Failure Validity	CGOGIAO BH2I-RV-OG PLT 164(60.3m)	
PLT 162	59.25	0.0000000000000000000000000000000000000	PLT 164	60.30		
Point Load Test	(m)	CG09140 BH21-RV-06 PLT 162(5925m	Point Load Test	(m)	CG09140 BH21-RV-06 PLT 164(60.3m)	
Point	Depth (m)	A CONTRACTOR OF A CONTRACTOR	Point	Depth (m)		

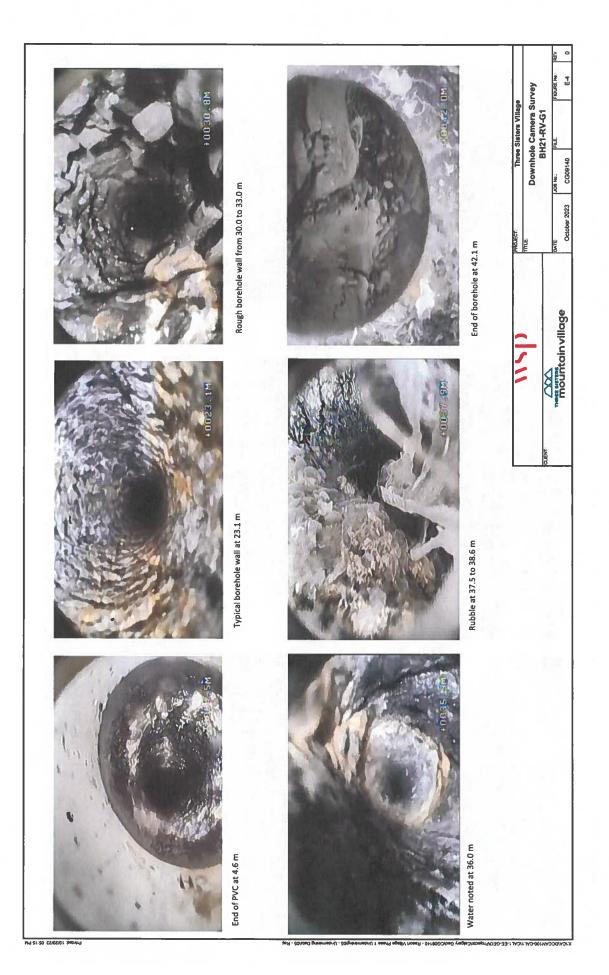
Axial	Valid	25	Diametral Invalid	S I		140 / 2022
Point Load Test Type	Failure Validity	CG09140 6421-RV-06 PLT 167(61.8-1)	Point Load Test Type Failure Validity	CG09140 BH21-RV-06 PLT 169(62.05-1)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022
PLT 167	61.80	40	PLT 169 62.05	30 S	lage Phase	RV-06
Point Load Test	Depth (m)	CG09140 BH21-RV-06 PLT 167(618-)	Point Load Test Depth (m)	CG 09140 BH21-RV-06 PLT 169(62.05m)	Resort Vill	BH21-RV-06
Diametral	Invalid		Diametral Valid			
100	<u> </u>		Diam	SI III		ge
Point Load Test Type	Failure Validity In	CG.09140 CG.09140 BH21-RV-06 PLT 166(61.7m)	Point Load Test Type         Diam           Failure Validity         Valid	CG09140 CG09140 BH21-RV-06 PLT 168(61.9m)	CLIENT:	THREE SISTERS mountain village
-		CGOGI40 CGOGI40 BH21-RV-06 PLT 166(613-1) PLT 166(613-1)		CGOPIAO CGOPIAO BH2I-RV-OG PLT 168(61.9m) PLT 168(61.9m)	CLIENT:	THREE SISTERS mountain village

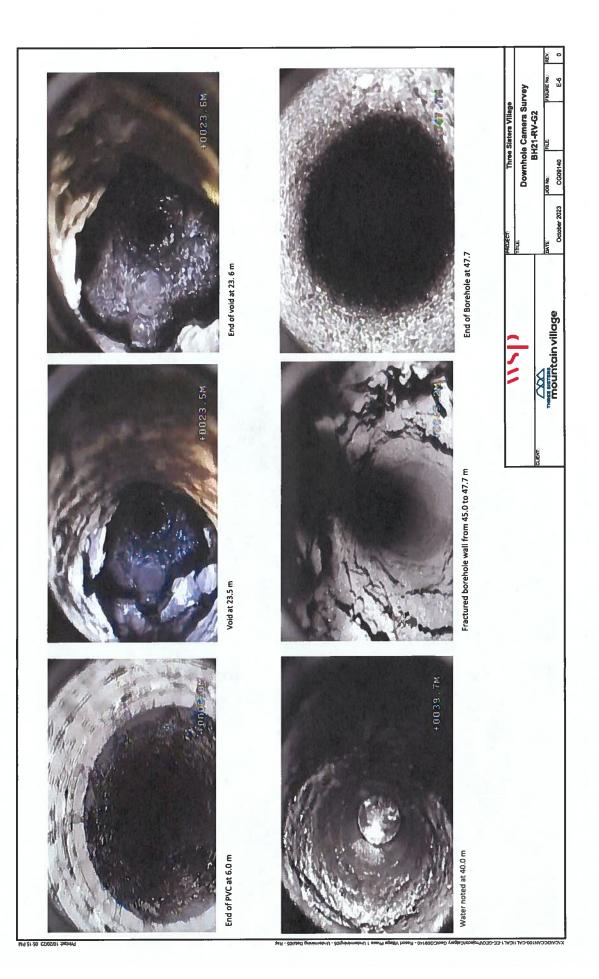
							57 of 58
Axial	Valid	27	Axial Valid	32		140 2022	57
Point Load Test Type	Failure Validity	CG 09140 BH21-RV-06 PLT 19(62.55m)	Point Load Test Type Failure Validity	CG 09140 BH21-RV-06 PLT 173(629m)	Resort Village Phase 1 Undermining PLTs	CG09140 February 2022	
PLT 171	62.55	40	PLT 173 62.90	40 (	age Phase 1	RV-06	
Point Load Test	Depth (m)	CG 09140 BH21-RV-06 PLT 191(62.55-1)	Point Load Test Depth (m)	CG09140 6421-RV-06 PLT 173(629-)	Resort Vill	BH21-RV-06	
Diametral	Valid		Diametral Valid	to ("tal) ("tal)		ge	
Point Load Test Type	Failure Validity	CGO9140 BH21-RV-06 PLT 170(6245m	Point Load Test Type Failure Validity	CG 09140 CG 09140 BH21-RV-06 PLT 172(627m)	CLIENT:	THREE SISTERS mountain village	
02	51		PLT 172 62.70				
PLT 170	62.45	CG09140 BH21-RV-06 PLT 170(6245m)	PLT 62	CG 09140 BH21-RV-06 PLT 172(627)			

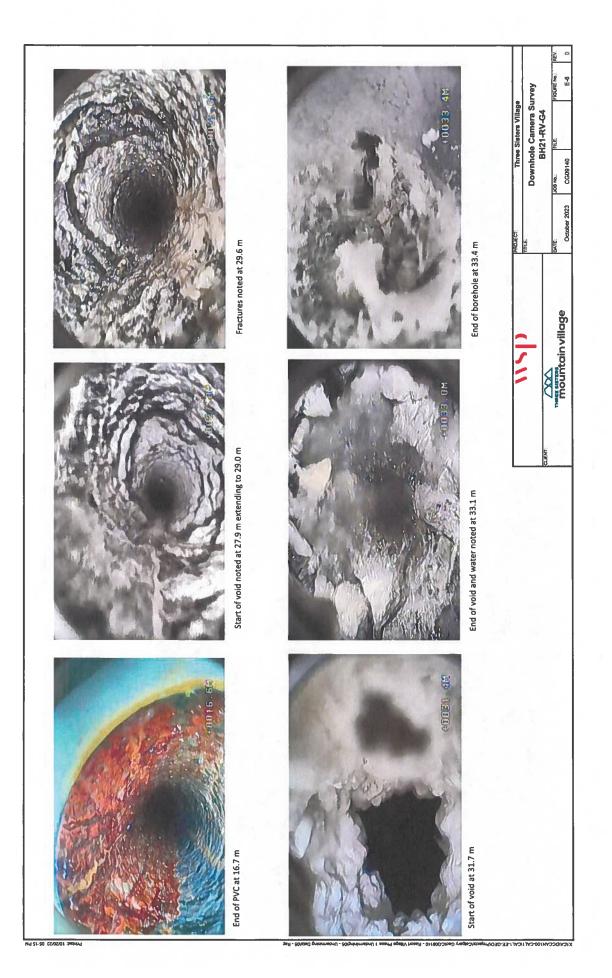


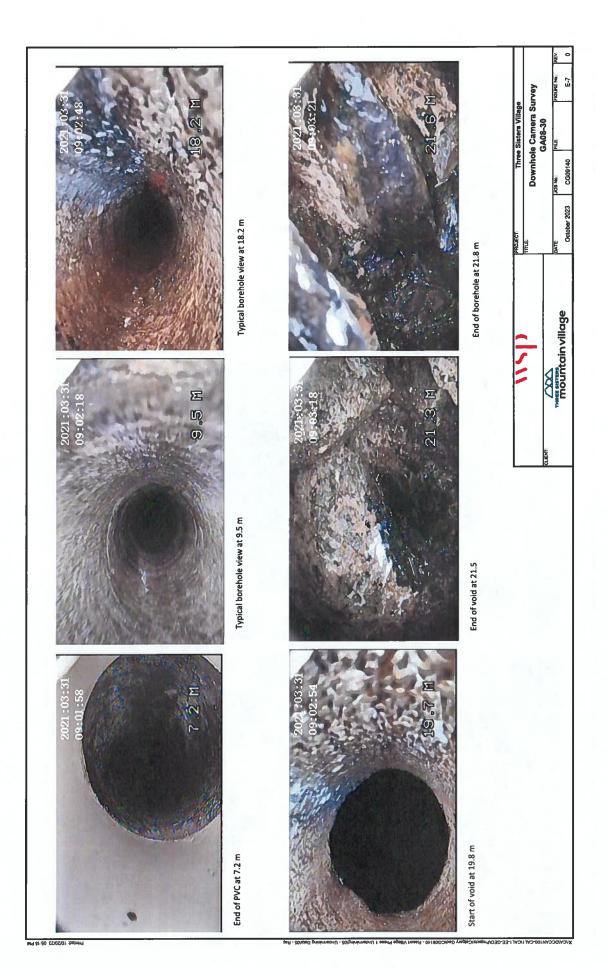

## **Appendix E**

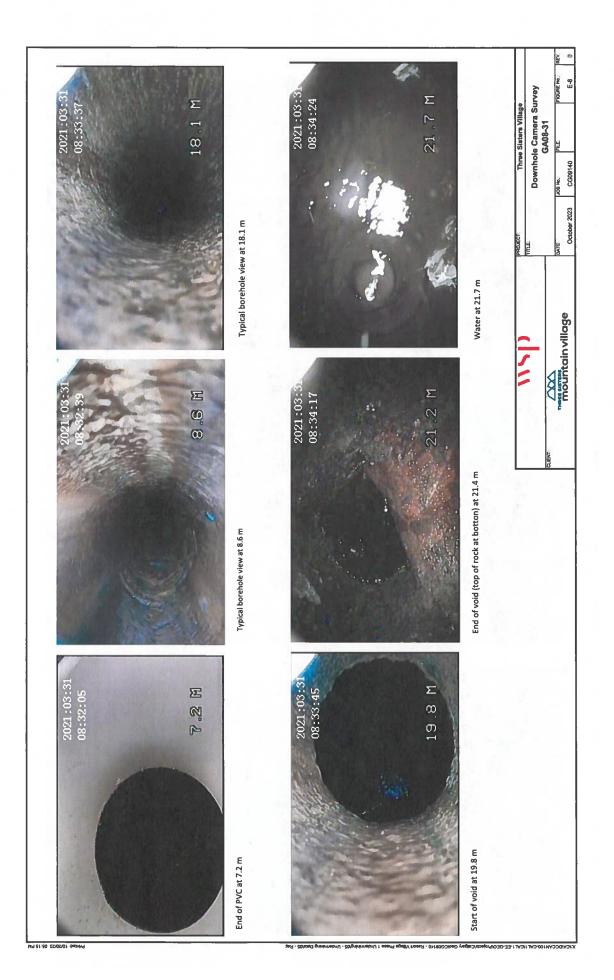

#### **Camera Survey**

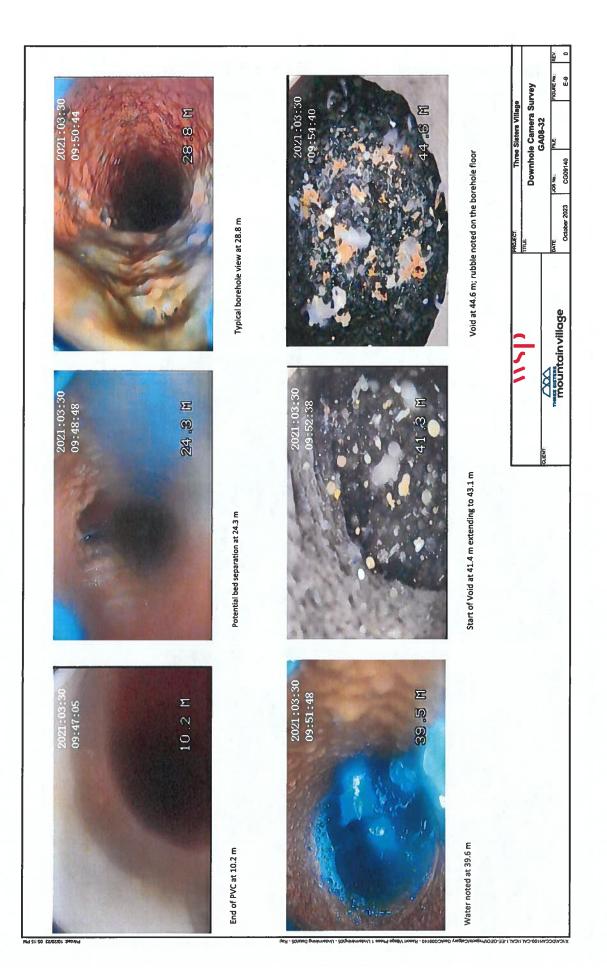


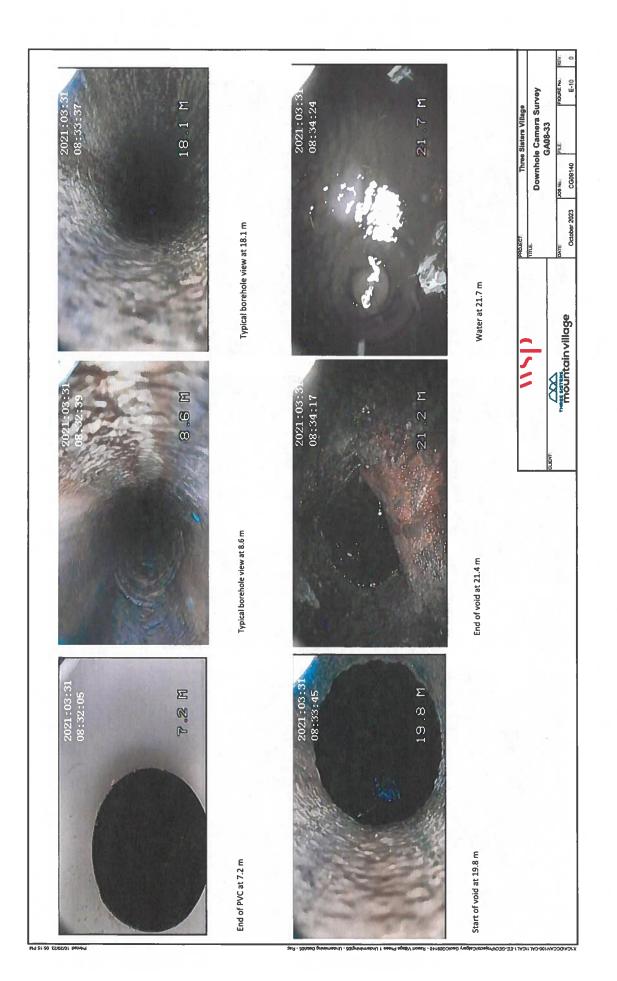


без<u>н</u> - с

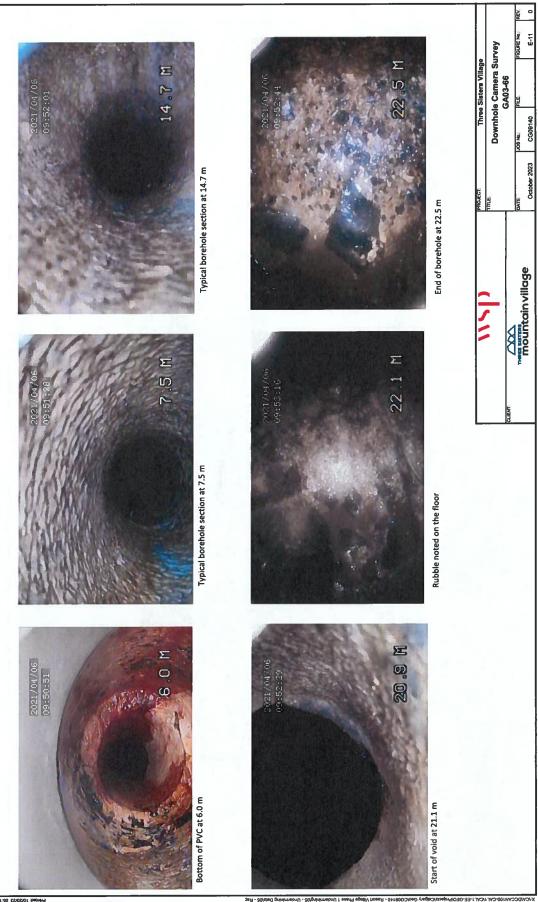

114 ST:20 CC/02/01 PRUMA



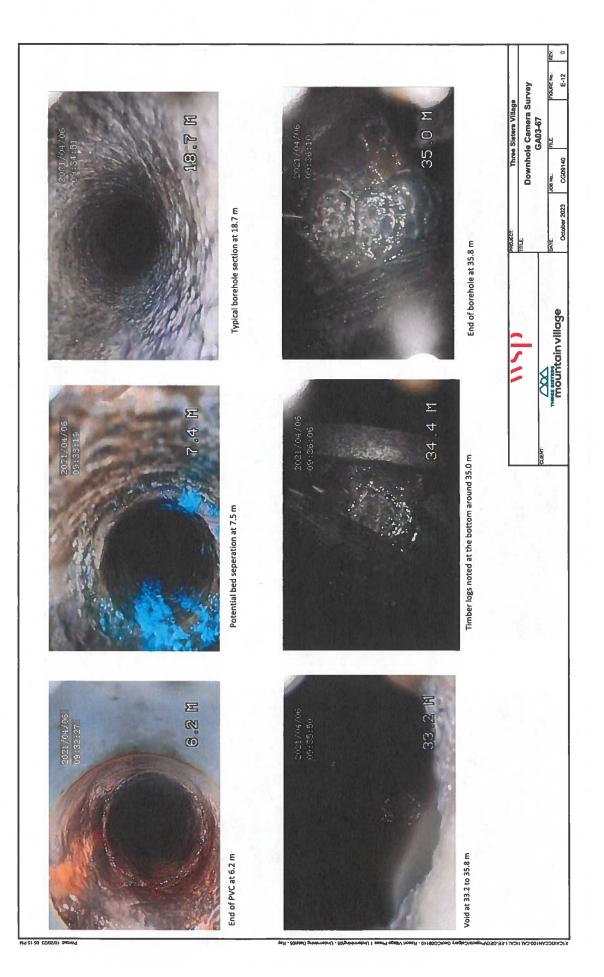



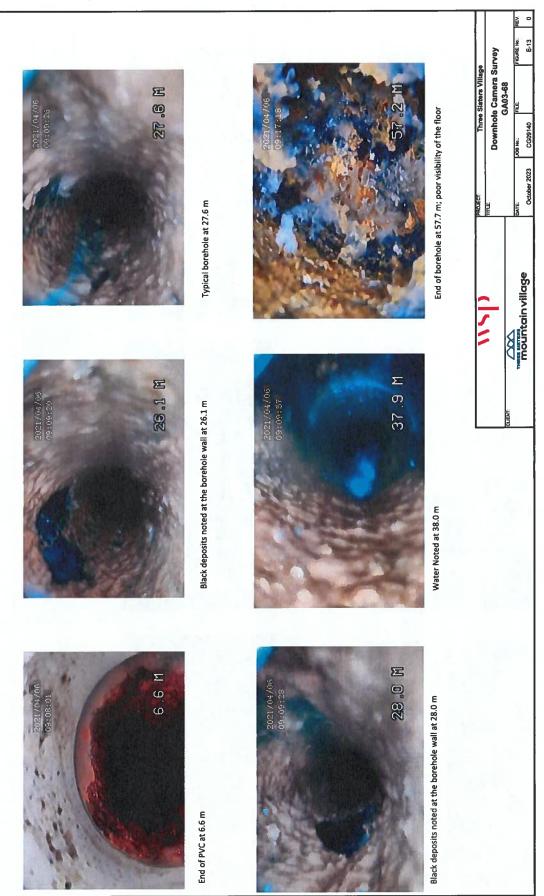










Mid \$1:50 62/02/05 (PROVID





Phylad 10/20/23 05:15 PM

# **Appendix F**

### Limitations

#### Limitations

- 1. The work performed in the preparation of this report and the conclusions presented are subject to the following:
  - a. The Standard Terms and Conditions which form a part of our Professional Services Contract;
  - b. The Scope of Services;
  - c. Time and Budgetary limitations as described in our Contract; and
  - d. The Limitations stated herein.
- 2. No other warranties or representations, either expressed or implied, are made as to the professional services provided under the terms of our Contract, or the conclusions presented.
- 3. The conclusions presented in this report were based, in part, on visual observations of the Site and attendant structures. Our conclusions cannot and are not extended to include those portions of the Site or structures, which are not reasonably available, in WSP's opinion, for direct observation.
- 4. The environmental conditions at the Site were assessed, within the limitations set out above, having due regard for applicable environmental regulations as of the date of the inspection. A review of compliance by past owners or occupants of the Site with any applicable local, provincial or federal bylaws, orders-in-council, legislative enactments and regulations was not performed.
- 5. The Site history research included obtaining information from third parties and employees or agents of the owner. No attempt has been made to verify the accuracy of any information provided, unless specifically noted in our report.
- 6. Where testing was performed, it was carried out in accordance with the terms of our contract providing for testing. Other substances, or different quantities of substances testing for, may be present on-site and may be revealed by different or other testing not provided for in our contract.
- 7. Because of the limitations referred to above, different environmental conditions from those stated in our report may exist. Should such different conditions be encountered, WSP must be notified in order that it may determine if modifications to the conclusions in the report are necessary.
- 8. The utilization of WSP's services during the implementation of any remedial measures will allow WSP to observe compliance with the conclusions and recommendations contained in the report. WSP's involvement will also allow for changes to be made as necessary to suit field conditions as they are encountered.
- 9. This report is for the sole use of the party to whom it is addressed unless expressly stated otherwise in the report or contract. Any use which any third party makes of the report, in whole or the part, or any reliance thereon or decisions made based on any information or conclusions in the report is the sole responsibility of such third party. WSP accepts no responsibility whatsoever for damages or loss of any nature or kind suffered by any such third party as a result of actions taken or not taken or decisions made in reliance on the report or anything set out therein.
- 10. This report is not to be given over to any third party for any purpose whatsoever without the written permission of WSP.
- 11. Provided that the report is still reliable, and less than 12 months old, WSP will issue a third-party reliance letter to parties that the client identifies in writing, upon payment of the then current fee for such letters. All third parties relying on WSP's report, by such reliance agree to be bound by our proposal and WSP's standard reliance letter. WSP's standard reliance letter indicates that in no event shall WSP be liable for

any damages, howsoever arising, relating to third-party reliance on WSP's report. No reliance by any party is permitted without such agreement.